Solve for x
x=24
x=-24
Graph
Share
Copied to clipboard
x^{2}+1024=\left(\frac{5}{3}x\right)^{2}
Calculate 32 to the power of 2 and get 1024.
x^{2}+1024=\left(\frac{5}{3}\right)^{2}x^{2}
Expand \left(\frac{5}{3}x\right)^{2}.
x^{2}+1024=\frac{25}{9}x^{2}
Calculate \frac{5}{3} to the power of 2 and get \frac{25}{9}.
x^{2}+1024-\frac{25}{9}x^{2}=0
Subtract \frac{25}{9}x^{2} from both sides.
-\frac{16}{9}x^{2}+1024=0
Combine x^{2} and -\frac{25}{9}x^{2} to get -\frac{16}{9}x^{2}.
-\frac{16}{9}x^{2}=-1024
Subtract 1024 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-1024\left(-\frac{9}{16}\right)
Multiply both sides by -\frac{9}{16}, the reciprocal of -\frac{16}{9}.
x^{2}=576
Multiply -1024 and -\frac{9}{16} to get 576.
x=24 x=-24
Take the square root of both sides of the equation.
x^{2}+1024=\left(\frac{5}{3}x\right)^{2}
Calculate 32 to the power of 2 and get 1024.
x^{2}+1024=\left(\frac{5}{3}\right)^{2}x^{2}
Expand \left(\frac{5}{3}x\right)^{2}.
x^{2}+1024=\frac{25}{9}x^{2}
Calculate \frac{5}{3} to the power of 2 and get \frac{25}{9}.
x^{2}+1024-\frac{25}{9}x^{2}=0
Subtract \frac{25}{9}x^{2} from both sides.
-\frac{16}{9}x^{2}+1024=0
Combine x^{2} and -\frac{25}{9}x^{2} to get -\frac{16}{9}x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{16}{9}\right)\times 1024}}{2\left(-\frac{16}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{16}{9} for a, 0 for b, and 1024 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{16}{9}\right)\times 1024}}{2\left(-\frac{16}{9}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{64}{9}\times 1024}}{2\left(-\frac{16}{9}\right)}
Multiply -4 times -\frac{16}{9}.
x=\frac{0±\sqrt{\frac{65536}{9}}}{2\left(-\frac{16}{9}\right)}
Multiply \frac{64}{9} times 1024.
x=\frac{0±\frac{256}{3}}{2\left(-\frac{16}{9}\right)}
Take the square root of \frac{65536}{9}.
x=\frac{0±\frac{256}{3}}{-\frac{32}{9}}
Multiply 2 times -\frac{16}{9}.
x=-24
Now solve the equation x=\frac{0±\frac{256}{3}}{-\frac{32}{9}} when ± is plus.
x=24
Now solve the equation x=\frac{0±\frac{256}{3}}{-\frac{32}{9}} when ± is minus.
x=-24 x=24
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}