Solve for x
x = -\frac{13}{3} = -4\frac{1}{3} \approx -4.333333333
x=11
Graph
Share
Copied to clipboard
x^{2}+x^{2}-8x+16+\left(x-6\right)^{2}=195
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
2x^{2}-8x+16+\left(x-6\right)^{2}=195
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+16+x^{2}-12x+36=195
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
3x^{2}-8x+16-12x+36=195
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-20x+16+36=195
Combine -8x and -12x to get -20x.
3x^{2}-20x+52=195
Add 16 and 36 to get 52.
3x^{2}-20x+52-195=0
Subtract 195 from both sides.
3x^{2}-20x-143=0
Subtract 195 from 52 to get -143.
a+b=-20 ab=3\left(-143\right)=-429
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-143. To find a and b, set up a system to be solved.
1,-429 3,-143 11,-39 13,-33
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -429.
1-429=-428 3-143=-140 11-39=-28 13-33=-20
Calculate the sum for each pair.
a=-33 b=13
The solution is the pair that gives sum -20.
\left(3x^{2}-33x\right)+\left(13x-143\right)
Rewrite 3x^{2}-20x-143 as \left(3x^{2}-33x\right)+\left(13x-143\right).
3x\left(x-11\right)+13\left(x-11\right)
Factor out 3x in the first and 13 in the second group.
\left(x-11\right)\left(3x+13\right)
Factor out common term x-11 by using distributive property.
x=11 x=-\frac{13}{3}
To find equation solutions, solve x-11=0 and 3x+13=0.
x^{2}+x^{2}-8x+16+\left(x-6\right)^{2}=195
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
2x^{2}-8x+16+\left(x-6\right)^{2}=195
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+16+x^{2}-12x+36=195
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
3x^{2}-8x+16-12x+36=195
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-20x+16+36=195
Combine -8x and -12x to get -20x.
3x^{2}-20x+52=195
Add 16 and 36 to get 52.
3x^{2}-20x+52-195=0
Subtract 195 from both sides.
3x^{2}-20x-143=0
Subtract 195 from 52 to get -143.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\left(-143\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -20 for b, and -143 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 3\left(-143\right)}}{2\times 3}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-12\left(-143\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-20\right)±\sqrt{400+1716}}{2\times 3}
Multiply -12 times -143.
x=\frac{-\left(-20\right)±\sqrt{2116}}{2\times 3}
Add 400 to 1716.
x=\frac{-\left(-20\right)±46}{2\times 3}
Take the square root of 2116.
x=\frac{20±46}{2\times 3}
The opposite of -20 is 20.
x=\frac{20±46}{6}
Multiply 2 times 3.
x=\frac{66}{6}
Now solve the equation x=\frac{20±46}{6} when ± is plus. Add 20 to 46.
x=11
Divide 66 by 6.
x=-\frac{26}{6}
Now solve the equation x=\frac{20±46}{6} when ± is minus. Subtract 46 from 20.
x=-\frac{13}{3}
Reduce the fraction \frac{-26}{6} to lowest terms by extracting and canceling out 2.
x=11 x=-\frac{13}{3}
The equation is now solved.
x^{2}+x^{2}-8x+16+\left(x-6\right)^{2}=195
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
2x^{2}-8x+16+\left(x-6\right)^{2}=195
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+16+x^{2}-12x+36=195
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
3x^{2}-8x+16-12x+36=195
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-20x+16+36=195
Combine -8x and -12x to get -20x.
3x^{2}-20x+52=195
Add 16 and 36 to get 52.
3x^{2}-20x=195-52
Subtract 52 from both sides.
3x^{2}-20x=143
Subtract 52 from 195 to get 143.
\frac{3x^{2}-20x}{3}=\frac{143}{3}
Divide both sides by 3.
x^{2}-\frac{20}{3}x=\frac{143}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=\frac{143}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{143}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{529}{9}
Add \frac{143}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{529}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{529}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{23}{3} x-\frac{10}{3}=-\frac{23}{3}
Simplify.
x=11 x=-\frac{13}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}