Solve for x
x=-18
x=16
Graph
Share
Copied to clipboard
x^{2}+x^{2}+4x+4=580
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=580
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x+4-580=0
Subtract 580 from both sides.
2x^{2}+4x-576=0
Subtract 580 from 4 to get -576.
x^{2}+2x-288=0
Divide both sides by 2.
a+b=2 ab=1\left(-288\right)=-288
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-288. To find a and b, set up a system to be solved.
-1,288 -2,144 -3,96 -4,72 -6,48 -8,36 -9,32 -12,24 -16,18
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -288.
-1+288=287 -2+144=142 -3+96=93 -4+72=68 -6+48=42 -8+36=28 -9+32=23 -12+24=12 -16+18=2
Calculate the sum for each pair.
a=-16 b=18
The solution is the pair that gives sum 2.
\left(x^{2}-16x\right)+\left(18x-288\right)
Rewrite x^{2}+2x-288 as \left(x^{2}-16x\right)+\left(18x-288\right).
x\left(x-16\right)+18\left(x-16\right)
Factor out x in the first and 18 in the second group.
\left(x-16\right)\left(x+18\right)
Factor out common term x-16 by using distributive property.
x=16 x=-18
To find equation solutions, solve x-16=0 and x+18=0.
x^{2}+x^{2}+4x+4=580
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=580
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x+4-580=0
Subtract 580 from both sides.
2x^{2}+4x-576=0
Subtract 580 from 4 to get -576.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-576\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -576 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-576\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-576\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+4608}}{2\times 2}
Multiply -8 times -576.
x=\frac{-4±\sqrt{4624}}{2\times 2}
Add 16 to 4608.
x=\frac{-4±68}{2\times 2}
Take the square root of 4624.
x=\frac{-4±68}{4}
Multiply 2 times 2.
x=\frac{64}{4}
Now solve the equation x=\frac{-4±68}{4} when ± is plus. Add -4 to 68.
x=16
Divide 64 by 4.
x=-\frac{72}{4}
Now solve the equation x=\frac{-4±68}{4} when ± is minus. Subtract 68 from -4.
x=-18
Divide -72 by 4.
x=16 x=-18
The equation is now solved.
x^{2}+x^{2}+4x+4=580
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+4x+4=580
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4x=580-4
Subtract 4 from both sides.
2x^{2}+4x=576
Subtract 4 from 580 to get 576.
\frac{2x^{2}+4x}{2}=\frac{576}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{576}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{576}{2}
Divide 4 by 2.
x^{2}+2x=288
Divide 576 by 2.
x^{2}+2x+1^{2}=288+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=288+1
Square 1.
x^{2}+2x+1=289
Add 288 to 1.
\left(x+1\right)^{2}=289
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{289}
Take the square root of both sides of the equation.
x+1=17 x+1=-17
Simplify.
x=16 x=-18
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}