Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+x^{2}+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}+2x+1+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+6x+1+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x and 4x to get 6x.
3x^{2}+6x+5=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Add 1 and 4 to get 5.
3x^{2}+6x+5=x^{2}+6x+9+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
3x^{2}+6x+5=x^{2}+6x+9+x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x^{2}+6x+5=2x^{2}+6x+9+8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}+6x+5=2x^{2}+14x+9+16
Combine 6x and 8x to get 14x.
3x^{2}+6x+5=2x^{2}+14x+25
Add 9 and 16 to get 25.
3x^{2}+6x+5-2x^{2}=14x+25
Subtract 2x^{2} from both sides.
x^{2}+6x+5=14x+25
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+6x+5-14x=25
Subtract 14x from both sides.
x^{2}-8x+5=25
Combine 6x and -14x to get -8x.
x^{2}-8x+5-25=0
Subtract 25 from both sides.
x^{2}-8x-20=0
Subtract 25 from 5 to get -20.
a+b=-8 ab=-20
To solve the equation, factor x^{2}-8x-20 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-10 b=2
The solution is the pair that gives sum -8.
\left(x-10\right)\left(x+2\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=10 x=-2
To find equation solutions, solve x-10=0 and x+2=0.
x^{2}+x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+x^{2}+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}+2x+1+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+6x+1+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x and 4x to get 6x.
3x^{2}+6x+5=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Add 1 and 4 to get 5.
3x^{2}+6x+5=x^{2}+6x+9+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
3x^{2}+6x+5=x^{2}+6x+9+x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x^{2}+6x+5=2x^{2}+6x+9+8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}+6x+5=2x^{2}+14x+9+16
Combine 6x and 8x to get 14x.
3x^{2}+6x+5=2x^{2}+14x+25
Add 9 and 16 to get 25.
3x^{2}+6x+5-2x^{2}=14x+25
Subtract 2x^{2} from both sides.
x^{2}+6x+5=14x+25
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+6x+5-14x=25
Subtract 14x from both sides.
x^{2}-8x+5=25
Combine 6x and -14x to get -8x.
x^{2}-8x+5-25=0
Subtract 25 from both sides.
x^{2}-8x-20=0
Subtract 25 from 5 to get -20.
a+b=-8 ab=1\left(-20\right)=-20
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-10 b=2
The solution is the pair that gives sum -8.
\left(x^{2}-10x\right)+\left(2x-20\right)
Rewrite x^{2}-8x-20 as \left(x^{2}-10x\right)+\left(2x-20\right).
x\left(x-10\right)+2\left(x-10\right)
Factor out x in the first and 2 in the second group.
\left(x-10\right)\left(x+2\right)
Factor out common term x-10 by using distributive property.
x=10 x=-2
To find equation solutions, solve x-10=0 and x+2=0.
x^{2}+x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+x^{2}+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}+2x+1+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+6x+1+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x and 4x to get 6x.
3x^{2}+6x+5=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Add 1 and 4 to get 5.
3x^{2}+6x+5=x^{2}+6x+9+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
3x^{2}+6x+5=x^{2}+6x+9+x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x^{2}+6x+5=2x^{2}+6x+9+8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}+6x+5=2x^{2}+14x+9+16
Combine 6x and 8x to get 14x.
3x^{2}+6x+5=2x^{2}+14x+25
Add 9 and 16 to get 25.
3x^{2}+6x+5-2x^{2}=14x+25
Subtract 2x^{2} from both sides.
x^{2}+6x+5=14x+25
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+6x+5-14x=25
Subtract 14x from both sides.
x^{2}-8x+5=25
Combine 6x and -14x to get -8x.
x^{2}-8x+5-25=0
Subtract 25 from both sides.
x^{2}-8x-20=0
Subtract 25 from 5 to get -20.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-20\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-20\right)}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+80}}{2}
Multiply -4 times -20.
x=\frac{-\left(-8\right)±\sqrt{144}}{2}
Add 64 to 80.
x=\frac{-\left(-8\right)±12}{2}
Take the square root of 144.
x=\frac{8±12}{2}
The opposite of -8 is 8.
x=\frac{20}{2}
Now solve the equation x=\frac{8±12}{2} when ± is plus. Add 8 to 12.
x=10
Divide 20 by 2.
x=-\frac{4}{2}
Now solve the equation x=\frac{8±12}{2} when ± is minus. Subtract 12 from 8.
x=-2
Divide -4 by 2.
x=10 x=-2
The equation is now solved.
x^{2}+x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+2x+1+\left(x+2\right)^{2}=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+1+x^{2}+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
3x^{2}+2x+1+4x+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+6x+1+4=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Combine 2x and 4x to get 6x.
3x^{2}+6x+5=\left(x+3\right)^{2}+\left(x+4\right)^{2}
Add 1 and 4 to get 5.
3x^{2}+6x+5=x^{2}+6x+9+\left(x+4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
3x^{2}+6x+5=x^{2}+6x+9+x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
3x^{2}+6x+5=2x^{2}+6x+9+8x+16
Combine x^{2} and x^{2} to get 2x^{2}.
3x^{2}+6x+5=2x^{2}+14x+9+16
Combine 6x and 8x to get 14x.
3x^{2}+6x+5=2x^{2}+14x+25
Add 9 and 16 to get 25.
3x^{2}+6x+5-2x^{2}=14x+25
Subtract 2x^{2} from both sides.
x^{2}+6x+5=14x+25
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+6x+5-14x=25
Subtract 14x from both sides.
x^{2}-8x+5=25
Combine 6x and -14x to get -8x.
x^{2}-8x=25-5
Subtract 5 from both sides.
x^{2}-8x=20
Subtract 5 from 25 to get 20.
x^{2}-8x+\left(-4\right)^{2}=20+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=20+16
Square -4.
x^{2}-8x+16=36
Add 20 to 16.
\left(x-4\right)^{2}=36
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x-4=6 x-4=-6
Simplify.
x=10 x=-2
Add 4 to both sides of the equation.