Solve for x (complex solution)
x=40+10\sqrt{15}i\approx 40+38.729833462i
x=-10\sqrt{15}i+40\approx 40-38.729833462i
Graph
Share
Copied to clipboard
x^{2}+6400-160x+x^{2}=200
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(80-x\right)^{2}.
2x^{2}+6400-160x=200
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+6400-160x-200=0
Subtract 200 from both sides.
2x^{2}+6200-160x=0
Subtract 200 from 6400 to get 6200.
2x^{2}-160x+6200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-160\right)±\sqrt{\left(-160\right)^{2}-4\times 2\times 6200}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -160 for b, and 6200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-160\right)±\sqrt{25600-4\times 2\times 6200}}{2\times 2}
Square -160.
x=\frac{-\left(-160\right)±\sqrt{25600-8\times 6200}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-160\right)±\sqrt{25600-49600}}{2\times 2}
Multiply -8 times 6200.
x=\frac{-\left(-160\right)±\sqrt{-24000}}{2\times 2}
Add 25600 to -49600.
x=\frac{-\left(-160\right)±40\sqrt{15}i}{2\times 2}
Take the square root of -24000.
x=\frac{160±40\sqrt{15}i}{2\times 2}
The opposite of -160 is 160.
x=\frac{160±40\sqrt{15}i}{4}
Multiply 2 times 2.
x=\frac{160+40\sqrt{15}i}{4}
Now solve the equation x=\frac{160±40\sqrt{15}i}{4} when ± is plus. Add 160 to 40i\sqrt{15}.
x=40+10\sqrt{15}i
Divide 160+40i\sqrt{15} by 4.
x=\frac{-40\sqrt{15}i+160}{4}
Now solve the equation x=\frac{160±40\sqrt{15}i}{4} when ± is minus. Subtract 40i\sqrt{15} from 160.
x=-10\sqrt{15}i+40
Divide 160-40i\sqrt{15} by 4.
x=40+10\sqrt{15}i x=-10\sqrt{15}i+40
The equation is now solved.
x^{2}+6400-160x+x^{2}=200
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(80-x\right)^{2}.
2x^{2}+6400-160x=200
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-160x=200-6400
Subtract 6400 from both sides.
2x^{2}-160x=-6200
Subtract 6400 from 200 to get -6200.
\frac{2x^{2}-160x}{2}=-\frac{6200}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{160}{2}\right)x=-\frac{6200}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-80x=-\frac{6200}{2}
Divide -160 by 2.
x^{2}-80x=-3100
Divide -6200 by 2.
x^{2}-80x+\left(-40\right)^{2}=-3100+\left(-40\right)^{2}
Divide -80, the coefficient of the x term, by 2 to get -40. Then add the square of -40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-80x+1600=-3100+1600
Square -40.
x^{2}-80x+1600=-1500
Add -3100 to 1600.
\left(x-40\right)^{2}=-1500
Factor x^{2}-80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-40\right)^{2}}=\sqrt{-1500}
Take the square root of both sides of the equation.
x-40=10\sqrt{15}i x-40=-10\sqrt{15}i
Simplify.
x=40+10\sqrt{15}i x=-10\sqrt{15}i+40
Add 40 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}