Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+25-10x+x^{2}=9+\left(\frac{8}{5}x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
2x^{2}+25-10x=9+\left(\frac{8}{5}x-4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+25-10x=9+\frac{64}{25}x^{2}-\frac{64}{5}x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{8}{5}x-4\right)^{2}.
2x^{2}+25-10x=25+\frac{64}{25}x^{2}-\frac{64}{5}x
Add 9 and 16 to get 25.
2x^{2}+25-10x-25=\frac{64}{25}x^{2}-\frac{64}{5}x
Subtract 25 from both sides.
2x^{2}-10x=\frac{64}{25}x^{2}-\frac{64}{5}x
Subtract 25 from 25 to get 0.
2x^{2}-10x-\frac{64}{25}x^{2}=-\frac{64}{5}x
Subtract \frac{64}{25}x^{2} from both sides.
-\frac{14}{25}x^{2}-10x=-\frac{64}{5}x
Combine 2x^{2} and -\frac{64}{25}x^{2} to get -\frac{14}{25}x^{2}.
-\frac{14}{25}x^{2}-10x+\frac{64}{5}x=0
Add \frac{64}{5}x to both sides.
-\frac{14}{25}x^{2}+\frac{14}{5}x=0
Combine -10x and \frac{64}{5}x to get \frac{14}{5}x.
x\left(-\frac{14}{25}x+\frac{14}{5}\right)=0
Factor out x.
x=0 x=5
To find equation solutions, solve x=0 and -\frac{14x}{25}+\frac{14}{5}=0.
x^{2}+25-10x+x^{2}=9+\left(\frac{8}{5}x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
2x^{2}+25-10x=9+\left(\frac{8}{5}x-4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+25-10x=9+\frac{64}{25}x^{2}-\frac{64}{5}x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{8}{5}x-4\right)^{2}.
2x^{2}+25-10x=25+\frac{64}{25}x^{2}-\frac{64}{5}x
Add 9 and 16 to get 25.
2x^{2}+25-10x-25=\frac{64}{25}x^{2}-\frac{64}{5}x
Subtract 25 from both sides.
2x^{2}-10x=\frac{64}{25}x^{2}-\frac{64}{5}x
Subtract 25 from 25 to get 0.
2x^{2}-10x-\frac{64}{25}x^{2}=-\frac{64}{5}x
Subtract \frac{64}{25}x^{2} from both sides.
-\frac{14}{25}x^{2}-10x=-\frac{64}{5}x
Combine 2x^{2} and -\frac{64}{25}x^{2} to get -\frac{14}{25}x^{2}.
-\frac{14}{25}x^{2}-10x+\frac{64}{5}x=0
Add \frac{64}{5}x to both sides.
-\frac{14}{25}x^{2}+\frac{14}{5}x=0
Combine -10x and \frac{64}{5}x to get \frac{14}{5}x.
x=\frac{-\frac{14}{5}±\sqrt{\left(\frac{14}{5}\right)^{2}}}{2\left(-\frac{14}{25}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{14}{25} for a, \frac{14}{5} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{14}{5}±\frac{14}{5}}{2\left(-\frac{14}{25}\right)}
Take the square root of \left(\frac{14}{5}\right)^{2}.
x=\frac{-\frac{14}{5}±\frac{14}{5}}{-\frac{28}{25}}
Multiply 2 times -\frac{14}{25}.
x=\frac{0}{-\frac{28}{25}}
Now solve the equation x=\frac{-\frac{14}{5}±\frac{14}{5}}{-\frac{28}{25}} when ± is plus. Add -\frac{14}{5} to \frac{14}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -\frac{28}{25} by multiplying 0 by the reciprocal of -\frac{28}{25}.
x=-\frac{\frac{28}{5}}{-\frac{28}{25}}
Now solve the equation x=\frac{-\frac{14}{5}±\frac{14}{5}}{-\frac{28}{25}} when ± is minus. Subtract \frac{14}{5} from -\frac{14}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=5
Divide -\frac{28}{5} by -\frac{28}{25} by multiplying -\frac{28}{5} by the reciprocal of -\frac{28}{25}.
x=0 x=5
The equation is now solved.
x^{2}+25-10x+x^{2}=9+\left(\frac{8}{5}x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
2x^{2}+25-10x=9+\left(\frac{8}{5}x-4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+25-10x=9+\frac{64}{25}x^{2}-\frac{64}{5}x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{8}{5}x-4\right)^{2}.
2x^{2}+25-10x=25+\frac{64}{25}x^{2}-\frac{64}{5}x
Add 9 and 16 to get 25.
2x^{2}+25-10x-\frac{64}{25}x^{2}=25-\frac{64}{5}x
Subtract \frac{64}{25}x^{2} from both sides.
-\frac{14}{25}x^{2}+25-10x=25-\frac{64}{5}x
Combine 2x^{2} and -\frac{64}{25}x^{2} to get -\frac{14}{25}x^{2}.
-\frac{14}{25}x^{2}+25-10x+\frac{64}{5}x=25
Add \frac{64}{5}x to both sides.
-\frac{14}{25}x^{2}+25+\frac{14}{5}x=25
Combine -10x and \frac{64}{5}x to get \frac{14}{5}x.
-\frac{14}{25}x^{2}+\frac{14}{5}x=25-25
Subtract 25 from both sides.
-\frac{14}{25}x^{2}+\frac{14}{5}x=0
Subtract 25 from 25 to get 0.
\frac{-\frac{14}{25}x^{2}+\frac{14}{5}x}{-\frac{14}{25}}=\frac{0}{-\frac{14}{25}}
Divide both sides of the equation by -\frac{14}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{14}{5}}{-\frac{14}{25}}x=\frac{0}{-\frac{14}{25}}
Dividing by -\frac{14}{25} undoes the multiplication by -\frac{14}{25}.
x^{2}-5x=\frac{0}{-\frac{14}{25}}
Divide \frac{14}{5} by -\frac{14}{25} by multiplying \frac{14}{5} by the reciprocal of -\frac{14}{25}.
x^{2}-5x=0
Divide 0 by -\frac{14}{25} by multiplying 0 by the reciprocal of -\frac{14}{25}.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Simplify.
x=5 x=0
Add \frac{5}{2} to both sides of the equation.