Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+1600-80x+x^{2}=818
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-x\right)^{2}.
2x^{2}+1600-80x=818
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+1600-80x-818=0
Subtract 818 from both sides.
2x^{2}+782-80x=0
Subtract 818 from 1600 to get 782.
2x^{2}-80x+782=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 2\times 782}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -80 for b, and 782 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 2\times 782}}{2\times 2}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-8\times 782}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-80\right)±\sqrt{6400-6256}}{2\times 2}
Multiply -8 times 782.
x=\frac{-\left(-80\right)±\sqrt{144}}{2\times 2}
Add 6400 to -6256.
x=\frac{-\left(-80\right)±12}{2\times 2}
Take the square root of 144.
x=\frac{80±12}{2\times 2}
The opposite of -80 is 80.
x=\frac{80±12}{4}
Multiply 2 times 2.
x=\frac{92}{4}
Now solve the equation x=\frac{80±12}{4} when ± is plus. Add 80 to 12.
x=23
Divide 92 by 4.
x=\frac{68}{4}
Now solve the equation x=\frac{80±12}{4} when ± is minus. Subtract 12 from 80.
x=17
Divide 68 by 4.
x=23 x=17
The equation is now solved.
x^{2}+1600-80x+x^{2}=818
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(40-x\right)^{2}.
2x^{2}+1600-80x=818
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-80x=818-1600
Subtract 1600 from both sides.
2x^{2}-80x=-782
Subtract 1600 from 818 to get -782.
\frac{2x^{2}-80x}{2}=-\frac{782}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{80}{2}\right)x=-\frac{782}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-40x=-\frac{782}{2}
Divide -80 by 2.
x^{2}-40x=-391
Divide -782 by 2.
x^{2}-40x+\left(-20\right)^{2}=-391+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-391+400
Square -20.
x^{2}-40x+400=9
Add -391 to 400.
\left(x-20\right)^{2}=9
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-20=3 x-20=-3
Simplify.
x=23 x=17
Add 20 to both sides of the equation.