Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\left(30-x\right)^{2}=13^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 1 to get 2.
x^{2}+900-60x+x^{2}=13^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(30-x\right)^{2}.
2x^{2}+900-60x=13^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+900-60x=169
Calculate 13 to the power of 2 and get 169.
2x^{2}+900-60x-169=0
Subtract 169 from both sides.
2x^{2}+731-60x=0
Subtract 169 from 900 to get 731.
2x^{2}-60x+731=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 2\times 731}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -60 for b, and 731 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 2\times 731}}{2\times 2}
Square -60.
x=\frac{-\left(-60\right)±\sqrt{3600-8\times 731}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-60\right)±\sqrt{3600-5848}}{2\times 2}
Multiply -8 times 731.
x=\frac{-\left(-60\right)±\sqrt{-2248}}{2\times 2}
Add 3600 to -5848.
x=\frac{-\left(-60\right)±2\sqrt{562}i}{2\times 2}
Take the square root of -2248.
x=\frac{60±2\sqrt{562}i}{2\times 2}
The opposite of -60 is 60.
x=\frac{60±2\sqrt{562}i}{4}
Multiply 2 times 2.
x=\frac{60+2\sqrt{562}i}{4}
Now solve the equation x=\frac{60±2\sqrt{562}i}{4} when ± is plus. Add 60 to 2i\sqrt{562}.
x=\frac{\sqrt{562}i}{2}+15
Divide 60+2i\sqrt{562} by 4.
x=\frac{-2\sqrt{562}i+60}{4}
Now solve the equation x=\frac{60±2\sqrt{562}i}{4} when ± is minus. Subtract 2i\sqrt{562} from 60.
x=-\frac{\sqrt{562}i}{2}+15
Divide 60-2i\sqrt{562} by 4.
x=\frac{\sqrt{562}i}{2}+15 x=-\frac{\sqrt{562}i}{2}+15
The equation is now solved.
x^{2}+\left(30-x\right)^{2}=13^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 1 to get 2.
x^{2}+900-60x+x^{2}=13^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(30-x\right)^{2}.
2x^{2}+900-60x=13^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+900-60x=169
Calculate 13 to the power of 2 and get 169.
2x^{2}-60x=169-900
Subtract 900 from both sides.
2x^{2}-60x=-731
Subtract 900 from 169 to get -731.
\frac{2x^{2}-60x}{2}=-\frac{731}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{60}{2}\right)x=-\frac{731}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-30x=-\frac{731}{2}
Divide -60 by 2.
x^{2}-30x+\left(-15\right)^{2}=-\frac{731}{2}+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-\frac{731}{2}+225
Square -15.
x^{2}-30x+225=-\frac{281}{2}
Add -\frac{731}{2} to 225.
\left(x-15\right)^{2}=-\frac{281}{2}
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{-\frac{281}{2}}
Take the square root of both sides of the equation.
x-15=\frac{\sqrt{562}i}{2} x-15=-\frac{\sqrt{562}i}{2}
Simplify.
x=\frac{\sqrt{562}i}{2}+15 x=-\frac{\sqrt{562}i}{2}+15
Add 15 to both sides of the equation.