Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x^{2}+8x+4=\left(28-3x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
5x^{2}+8x+4=\left(28-3x\right)^{2}
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+8x+4=784-168x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(28-3x\right)^{2}.
5x^{2}+8x+4-784=-168x+9x^{2}
Subtract 784 from both sides.
5x^{2}+8x-780=-168x+9x^{2}
Subtract 784 from 4 to get -780.
5x^{2}+8x-780+168x=9x^{2}
Add 168x to both sides.
5x^{2}+176x-780=9x^{2}
Combine 8x and 168x to get 176x.
5x^{2}+176x-780-9x^{2}=0
Subtract 9x^{2} from both sides.
-4x^{2}+176x-780=0
Combine 5x^{2} and -9x^{2} to get -4x^{2}.
x=\frac{-176±\sqrt{176^{2}-4\left(-4\right)\left(-780\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 176 for b, and -780 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-176±\sqrt{30976-4\left(-4\right)\left(-780\right)}}{2\left(-4\right)}
Square 176.
x=\frac{-176±\sqrt{30976+16\left(-780\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-176±\sqrt{30976-12480}}{2\left(-4\right)}
Multiply 16 times -780.
x=\frac{-176±\sqrt{18496}}{2\left(-4\right)}
Add 30976 to -12480.
x=\frac{-176±136}{2\left(-4\right)}
Take the square root of 18496.
x=\frac{-176±136}{-8}
Multiply 2 times -4.
x=-\frac{40}{-8}
Now solve the equation x=\frac{-176±136}{-8} when ± is plus. Add -176 to 136.
x=5
Divide -40 by -8.
x=-\frac{312}{-8}
Now solve the equation x=\frac{-176±136}{-8} when ± is minus. Subtract 136 from -176.
x=39
Divide -312 by -8.
x=5 x=39
The equation is now solved.
x^{2}+4x^{2}+8x+4=\left(28-3x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
5x^{2}+8x+4=\left(28-3x\right)^{2}
Combine x^{2} and 4x^{2} to get 5x^{2}.
5x^{2}+8x+4=784-168x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(28-3x\right)^{2}.
5x^{2}+8x+4+168x=784+9x^{2}
Add 168x to both sides.
5x^{2}+176x+4=784+9x^{2}
Combine 8x and 168x to get 176x.
5x^{2}+176x+4-9x^{2}=784
Subtract 9x^{2} from both sides.
-4x^{2}+176x+4=784
Combine 5x^{2} and -9x^{2} to get -4x^{2}.
-4x^{2}+176x=784-4
Subtract 4 from both sides.
-4x^{2}+176x=780
Subtract 4 from 784 to get 780.
\frac{-4x^{2}+176x}{-4}=\frac{780}{-4}
Divide both sides by -4.
x^{2}+\frac{176}{-4}x=\frac{780}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-44x=\frac{780}{-4}
Divide 176 by -4.
x^{2}-44x=-195
Divide 780 by -4.
x^{2}-44x+\left(-22\right)^{2}=-195+\left(-22\right)^{2}
Divide -44, the coefficient of the x term, by 2 to get -22. Then add the square of -22 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-44x+484=-195+484
Square -22.
x^{2}-44x+484=289
Add -195 to 484.
\left(x-22\right)^{2}=289
Factor x^{2}-44x+484. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-22\right)^{2}}=\sqrt{289}
Take the square root of both sides of the equation.
x-22=17 x-22=-17
Simplify.
x=39 x=5
Add 22 to both sides of the equation.