Solve for x
x=\sqrt{2}+1\approx 2.414213562
x=1-\sqrt{2}\approx -0.414213562
Graph
Share
Copied to clipboard
x^{2}+4-4x+x^{2}=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
2x^{2}+4-4x=6
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+4-4x-6=0
Subtract 6 from both sides.
2x^{2}-2-4x=0
Subtract 6 from 4 to get -2.
2x^{2}-4x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-2\right)}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-2\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16+16}}{2\times 2}
Multiply -8 times -2.
x=\frac{-\left(-4\right)±\sqrt{32}}{2\times 2}
Add 16 to 16.
x=\frac{-\left(-4\right)±4\sqrt{2}}{2\times 2}
Take the square root of 32.
x=\frac{4±4\sqrt{2}}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{2}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{2}+4}{4}
Now solve the equation x=\frac{4±4\sqrt{2}}{4} when ± is plus. Add 4 to 4\sqrt{2}.
x=\sqrt{2}+1
Divide 4+4\sqrt{2} by 4.
x=\frac{4-4\sqrt{2}}{4}
Now solve the equation x=\frac{4±4\sqrt{2}}{4} when ± is minus. Subtract 4\sqrt{2} from 4.
x=1-\sqrt{2}
Divide 4-4\sqrt{2} by 4.
x=\sqrt{2}+1 x=1-\sqrt{2}
The equation is now solved.
x^{2}+4-4x+x^{2}=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
2x^{2}+4-4x=6
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x=6-4
Subtract 4 from both sides.
2x^{2}-4x=2
Subtract 4 from 6 to get 2.
\frac{2x^{2}-4x}{2}=\frac{2}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{2}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=\frac{2}{2}
Divide -4 by 2.
x^{2}-2x=1
Divide 2 by 2.
x^{2}-2x+1=1+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=2
Add 1 to 1.
\left(x-1\right)^{2}=2
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-1=\sqrt{2} x-1=-\sqrt{2}
Simplify.
x=\sqrt{2}+1 x=1-\sqrt{2}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}