Solve for x
x=3\sqrt{17}+6\approx 18.369316877
x=6-3\sqrt{17}\approx -6.369316877
Graph
Share
Copied to clipboard
x^{2}+144-24x+x^{2}=378
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-x\right)^{2}.
2x^{2}+144-24x=378
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+144-24x-378=0
Subtract 378 from both sides.
2x^{2}-234-24x=0
Subtract 378 from 144 to get -234.
2x^{2}-24x-234=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\left(-234\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and -234 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\left(-234\right)}}{2\times 2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\left(-234\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-24\right)±\sqrt{576+1872}}{2\times 2}
Multiply -8 times -234.
x=\frac{-\left(-24\right)±\sqrt{2448}}{2\times 2}
Add 576 to 1872.
x=\frac{-\left(-24\right)±12\sqrt{17}}{2\times 2}
Take the square root of 2448.
x=\frac{24±12\sqrt{17}}{2\times 2}
The opposite of -24 is 24.
x=\frac{24±12\sqrt{17}}{4}
Multiply 2 times 2.
x=\frac{12\sqrt{17}+24}{4}
Now solve the equation x=\frac{24±12\sqrt{17}}{4} when ± is plus. Add 24 to 12\sqrt{17}.
x=3\sqrt{17}+6
Divide 24+12\sqrt{17} by 4.
x=\frac{24-12\sqrt{17}}{4}
Now solve the equation x=\frac{24±12\sqrt{17}}{4} when ± is minus. Subtract 12\sqrt{17} from 24.
x=6-3\sqrt{17}
Divide 24-12\sqrt{17} by 4.
x=3\sqrt{17}+6 x=6-3\sqrt{17}
The equation is now solved.
x^{2}+144-24x+x^{2}=378
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12-x\right)^{2}.
2x^{2}+144-24x=378
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-24x=378-144
Subtract 144 from both sides.
2x^{2}-24x=234
Subtract 144 from 378 to get 234.
\frac{2x^{2}-24x}{2}=\frac{234}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{24}{2}\right)x=\frac{234}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-12x=\frac{234}{2}
Divide -24 by 2.
x^{2}-12x=117
Divide 234 by 2.
x^{2}-12x+\left(-6\right)^{2}=117+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=117+36
Square -6.
x^{2}-12x+36=153
Add 117 to 36.
\left(x-6\right)^{2}=153
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{153}
Take the square root of both sides of the equation.
x-6=3\sqrt{17} x-6=-3\sqrt{17}
Simplify.
x=3\sqrt{17}+6 x=6-3\sqrt{17}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}