Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+9x^{2}-60x+100=20
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3x+10\right)^{2}.
10x^{2}-60x+100=20
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}-60x+100-20=0
Subtract 20 from both sides.
10x^{2}-60x+80=0
Subtract 20 from 100 to get 80.
x^{2}-6x+8=0
Divide both sides by 10.
a+b=-6 ab=1\times 8=8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,-8 -2,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 8.
-1-8=-9 -2-4=-6
Calculate the sum for each pair.
a=-4 b=-2
The solution is the pair that gives sum -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Rewrite x^{2}-6x+8 as \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Factor out x in the first and -2 in the second group.
\left(x-4\right)\left(x-2\right)
Factor out common term x-4 by using distributive property.
x=4 x=2
To find equation solutions, solve x-4=0 and x-2=0.
x^{2}+9x^{2}-60x+100=20
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3x+10\right)^{2}.
10x^{2}-60x+100=20
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}-60x+100-20=0
Subtract 20 from both sides.
10x^{2}-60x+80=0
Subtract 20 from 100 to get 80.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 10\times 80}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -60 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-60\right)±\sqrt{3600-4\times 10\times 80}}{2\times 10}
Square -60.
x=\frac{-\left(-60\right)±\sqrt{3600-40\times 80}}{2\times 10}
Multiply -4 times 10.
x=\frac{-\left(-60\right)±\sqrt{3600-3200}}{2\times 10}
Multiply -40 times 80.
x=\frac{-\left(-60\right)±\sqrt{400}}{2\times 10}
Add 3600 to -3200.
x=\frac{-\left(-60\right)±20}{2\times 10}
Take the square root of 400.
x=\frac{60±20}{2\times 10}
The opposite of -60 is 60.
x=\frac{60±20}{20}
Multiply 2 times 10.
x=\frac{80}{20}
Now solve the equation x=\frac{60±20}{20} when ± is plus. Add 60 to 20.
x=4
Divide 80 by 20.
x=\frac{40}{20}
Now solve the equation x=\frac{60±20}{20} when ± is minus. Subtract 20 from 60.
x=2
Divide 40 by 20.
x=4 x=2
The equation is now solved.
x^{2}+9x^{2}-60x+100=20
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3x+10\right)^{2}.
10x^{2}-60x+100=20
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}-60x=20-100
Subtract 100 from both sides.
10x^{2}-60x=-80
Subtract 100 from 20 to get -80.
\frac{10x^{2}-60x}{10}=-\frac{80}{10}
Divide both sides by 10.
x^{2}+\left(-\frac{60}{10}\right)x=-\frac{80}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}-6x=-\frac{80}{10}
Divide -60 by 10.
x^{2}-6x=-8
Divide -80 by 10.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-8+9
Square -3.
x^{2}-6x+9=1
Add -8 to 9.
\left(x-3\right)^{2}=1
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-3=1 x-3=-1
Simplify.
x=4 x=2
Add 3 to both sides of the equation.