Evaluate
\frac{5x^{2}}{4}-2x-4
Expand
\frac{5x^{2}}{4}-2x-4
Graph
Share
Copied to clipboard
x^{2}+\left(-\frac{x}{2}+\frac{2\times 2}{2}\right)^{2}-2x-4\left(-\frac{x}{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2}{2}.
x^{2}+\left(\frac{-x+2\times 2}{2}\right)^{2}-2x-4\left(-\frac{x}{2}+2\right)
Since -\frac{x}{2} and \frac{2\times 2}{2} have the same denominator, add them by adding their numerators.
x^{2}+\left(\frac{-x+4}{2}\right)^{2}-2x-4\left(-\frac{x}{2}+2\right)
Do the multiplications in -x+2\times 2.
x^{2}+\frac{\left(-x+4\right)^{2}}{2^{2}}-2x-4\left(-\frac{x}{2}+2\right)
To raise \frac{-x+4}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-2x\right)\times 2^{2}}{2^{2}}+\frac{\left(-x+4\right)^{2}}{2^{2}}-4\left(-\frac{x}{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-2x times \frac{2^{2}}{2^{2}}.
\frac{\left(x^{2}-2x\right)\times 2^{2}+\left(-x+4\right)^{2}}{2^{2}}-4\left(-\frac{x}{2}+2\right)
Since \frac{\left(x^{2}-2x\right)\times 2^{2}}{2^{2}} and \frac{\left(-x+4\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-8x+x^{2}-8x+16}{2^{2}}-4\left(-\frac{x}{2}+2\right)
Do the multiplications in \left(x^{2}-2x\right)\times 2^{2}+\left(-x+4\right)^{2}.
\frac{5x^{2}-16x+16}{2^{2}}-4\left(-\frac{x}{2}+2\right)
Combine like terms in 4x^{2}-8x+x^{2}-8x+16.
\frac{5x^{2}-16x+16}{2^{2}}-4\left(-\frac{x}{2}+\frac{2\times 2}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2}{2}.
\frac{5x^{2}-16x+16}{2^{2}}-4\times \frac{-x+2\times 2}{2}
Since -\frac{x}{2} and \frac{2\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{5x^{2}-16x+16}{2^{2}}-4\times \frac{-x+4}{2}
Do the multiplications in -x+2\times 2.
\frac{5x^{2}-16x+16}{2^{2}}-2\left(-x+4\right)
Cancel out 2, the greatest common factor in 4 and 2.
\frac{5x^{2}-16x+16}{4}-2\left(-x+4\right)
Calculate 2 to the power of 2 and get 4.
\frac{5x^{2}-16x+16}{4}+2x-8
Use the distributive property to multiply -2 by -x+4.
\frac{5x^{2}-16x+16}{4}+\frac{4\left(2x-8\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-8 times \frac{4}{4}.
\frac{5x^{2}-16x+16+4\left(2x-8\right)}{4}
Since \frac{5x^{2}-16x+16}{4} and \frac{4\left(2x-8\right)}{4} have the same denominator, add them by adding their numerators.
\frac{5x^{2}-16x+16+8x-32}{4}
Do the multiplications in 5x^{2}-16x+16+4\left(2x-8\right).
\frac{5x^{2}-8x-16}{4}
Combine like terms in 5x^{2}-16x+16+8x-32.
x^{2}+\left(-\frac{x}{2}+\frac{2\times 2}{2}\right)^{2}-2x-4\left(-\frac{x}{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2}{2}.
x^{2}+\left(\frac{-x+2\times 2}{2}\right)^{2}-2x-4\left(-\frac{x}{2}+2\right)
Since -\frac{x}{2} and \frac{2\times 2}{2} have the same denominator, add them by adding their numerators.
x^{2}+\left(\frac{-x+4}{2}\right)^{2}-2x-4\left(-\frac{x}{2}+2\right)
Do the multiplications in -x+2\times 2.
x^{2}+\frac{\left(-x+4\right)^{2}}{2^{2}}-2x-4\left(-\frac{x}{2}+2\right)
To raise \frac{-x+4}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-2x\right)\times 2^{2}}{2^{2}}+\frac{\left(-x+4\right)^{2}}{2^{2}}-4\left(-\frac{x}{2}+2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-2x times \frac{2^{2}}{2^{2}}.
\frac{\left(x^{2}-2x\right)\times 2^{2}+\left(-x+4\right)^{2}}{2^{2}}-4\left(-\frac{x}{2}+2\right)
Since \frac{\left(x^{2}-2x\right)\times 2^{2}}{2^{2}} and \frac{\left(-x+4\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-8x+x^{2}-8x+16}{2^{2}}-4\left(-\frac{x}{2}+2\right)
Do the multiplications in \left(x^{2}-2x\right)\times 2^{2}+\left(-x+4\right)^{2}.
\frac{5x^{2}-16x+16}{2^{2}}-4\left(-\frac{x}{2}+2\right)
Combine like terms in 4x^{2}-8x+x^{2}-8x+16.
\frac{5x^{2}-16x+16}{2^{2}}-4\left(-\frac{x}{2}+\frac{2\times 2}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2}{2}.
\frac{5x^{2}-16x+16}{2^{2}}-4\times \frac{-x+2\times 2}{2}
Since -\frac{x}{2} and \frac{2\times 2}{2} have the same denominator, add them by adding their numerators.
\frac{5x^{2}-16x+16}{2^{2}}-4\times \frac{-x+4}{2}
Do the multiplications in -x+2\times 2.
\frac{5x^{2}-16x+16}{2^{2}}-2\left(-x+4\right)
Cancel out 2, the greatest common factor in 4 and 2.
\frac{5x^{2}-16x+16}{4}-2\left(-x+4\right)
Calculate 2 to the power of 2 and get 4.
\frac{5x^{2}-16x+16}{4}+2x-8
Use the distributive property to multiply -2 by -x+4.
\frac{5x^{2}-16x+16}{4}+\frac{4\left(2x-8\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2x-8 times \frac{4}{4}.
\frac{5x^{2}-16x+16+4\left(2x-8\right)}{4}
Since \frac{5x^{2}-16x+16}{4} and \frac{4\left(2x-8\right)}{4} have the same denominator, add them by adding their numerators.
\frac{5x^{2}-16x+16+8x-32}{4}
Do the multiplications in 5x^{2}-16x+16+4\left(2x-8\right).
\frac{5x^{2}-8x-16}{4}
Combine like terms in 5x^{2}-16x+16+8x-32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}