Solve for x (complex solution)
x=\frac{\sqrt{2}+\sqrt{6}+2i\sqrt{\sqrt{3}+1}}{2}\approx 1.931851653+1.65289165i
x=\frac{-2i\sqrt{\sqrt{3}+1}+\sqrt{2}+\sqrt{6}}{2}\approx 1.931851653-1.65289165i
Graph
Share
Copied to clipboard
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Square \sqrt{6}+\sqrt{2}-x.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Multiply \sqrt{2} and \sqrt{2} to get 2.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Multiply 2 and 2 to get 4.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+2+\left(\sqrt{6}\right)^{2}=2
The square of \sqrt{2} is 2.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+2+6=2
The square of \sqrt{6} is 6.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+8=2
Add 2 and 6 to get 8.
2x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+8=2
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+8-2=0
Subtract 2 from both sides.
2x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+6=0
Subtract 2 from 8 to get 6.
2x^{2}+\left(-2\sqrt{2}-2\sqrt{6}\right)x+4\sqrt{3}+6=0
Combine all terms containing x.
x=\frac{-\left(-2\sqrt{2}-2\sqrt{6}\right)±\sqrt{\left(-2\sqrt{2}-2\sqrt{6}\right)^{2}-4\times 2\left(4\sqrt{3}+6\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2\sqrt{2}-2\sqrt{6} for b, and 4\sqrt{3}+6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\sqrt{2}-2\sqrt{6}\right)±\sqrt{16\sqrt{3}+32-4\times 2\left(4\sqrt{3}+6\right)}}{2\times 2}
Square -2\sqrt{2}-2\sqrt{6}.
x=\frac{-\left(-2\sqrt{2}-2\sqrt{6}\right)±\sqrt{16\sqrt{3}+32-8\left(4\sqrt{3}+6\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\sqrt{2}-2\sqrt{6}\right)±\sqrt{16\sqrt{3}+32-32\sqrt{3}-48}}{2\times 2}
Multiply -8 times 4\sqrt{3}+6.
x=\frac{-\left(-2\sqrt{2}-2\sqrt{6}\right)±\sqrt{-16\sqrt{3}-16}}{2\times 2}
Add 32+16\sqrt{3} to -32\sqrt{3}-48.
x=\frac{-\left(-2\sqrt{2}-2\sqrt{6}\right)±4i\sqrt{\sqrt{3}+1}}{2\times 2}
Take the square root of -16-16\sqrt{3}.
x=\frac{2\sqrt{2}+2\sqrt{6}±4i\sqrt{\sqrt{3}+1}}{2\times 2}
The opposite of -2\sqrt{2}-2\sqrt{6} is 2\sqrt{2}+2\sqrt{6}.
x=\frac{2\sqrt{2}+2\sqrt{6}±4i\sqrt{\sqrt{3}+1}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{2}+2\sqrt{6}+4i\sqrt{\sqrt{3}+1}}{4}
Now solve the equation x=\frac{2\sqrt{2}+2\sqrt{6}±4i\sqrt{\sqrt{3}+1}}{4} when ± is plus. Add 2\sqrt{2}+2\sqrt{6} to 4i\sqrt{1+\sqrt{3}}.
x=\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}+i\sqrt{\sqrt{3}+1}
Divide 2\sqrt{2}+2\sqrt{6}+4i\sqrt{1+\sqrt{3}} by 4.
x=\frac{-4i\sqrt{\sqrt{3}+1}+2\sqrt{2}+2\sqrt{6}}{4}
Now solve the equation x=\frac{2\sqrt{2}+2\sqrt{6}±4i\sqrt{\sqrt{3}+1}}{4} when ± is minus. Subtract 4i\sqrt{1+\sqrt{3}} from 2\sqrt{2}+2\sqrt{6}.
x=-i\sqrt{\sqrt{3}+1}+\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}
Divide 2\sqrt{2}+2\sqrt{6}-4i\sqrt{1+\sqrt{3}} by 4.
x=\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}+i\sqrt{\sqrt{3}+1} x=-i\sqrt{\sqrt{3}+1}+\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}
The equation is now solved.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+2\sqrt{2}\sqrt{6}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Square \sqrt{6}+\sqrt{2}-x.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+2\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Multiply \sqrt{2} and \sqrt{2} to get 2.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+\left(\sqrt{2}\right)^{2}+\left(\sqrt{6}\right)^{2}=2
Multiply 2 and 2 to get 4.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+2+\left(\sqrt{6}\right)^{2}=2
The square of \sqrt{2} is 2.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+2+6=2
The square of \sqrt{6} is 6.
x^{2}+x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+8=2
Add 2 and 6 to get 8.
2x^{2}-2\sqrt{2}x-2\sqrt{6}x+4\sqrt{3}+8=2
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2\sqrt{2}x-2\sqrt{6}x+8=2-4\sqrt{3}
Subtract 4\sqrt{3} from both sides.
2x^{2}-2\sqrt{2}x-2\sqrt{6}x=2-4\sqrt{3}-8
Subtract 8 from both sides.
2x^{2}-2\sqrt{2}x-2\sqrt{6}x=-6-4\sqrt{3}
Subtract 8 from 2 to get -6.
2x^{2}+\left(-2\sqrt{2}-2\sqrt{6}\right)x=-6-4\sqrt{3}
Combine all terms containing x.
2x^{2}+\left(-2\sqrt{2}-2\sqrt{6}\right)x=-4\sqrt{3}-6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+\left(-2\sqrt{2}-2\sqrt{6}\right)x}{2}=\frac{-4\sqrt{3}-6}{2}
Divide both sides by 2.
x^{2}+\frac{-2\sqrt{2}-2\sqrt{6}}{2}x=\frac{-4\sqrt{3}-6}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\left(-\sqrt{2}-\sqrt{6}\right)x=\frac{-4\sqrt{3}-6}{2}
Divide -2\sqrt{2}-2\sqrt{6} by 2.
x^{2}+\left(-\sqrt{2}-\sqrt{6}\right)x=-2\sqrt{3}-3
Divide -6-4\sqrt{3} by 2.
x^{2}+\left(-\sqrt{2}-\sqrt{6}\right)x+\left(\frac{-\sqrt{2}-\sqrt{6}}{2}\right)^{2}=-2\sqrt{3}-3+\left(\frac{-\sqrt{2}-\sqrt{6}}{2}\right)^{2}
Divide -\sqrt{2}-\sqrt{6}, the coefficient of the x term, by 2 to get \frac{-\sqrt{2}-\sqrt{6}}{2}. Then add the square of \frac{-\sqrt{2}-\sqrt{6}}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\sqrt{2}-\sqrt{6}\right)x+\sqrt{3}+2=-2\sqrt{3}-3+\sqrt{3}+2
Square \frac{-\sqrt{2}-\sqrt{6}}{2}.
x^{2}+\left(-\sqrt{2}-\sqrt{6}\right)x+\sqrt{3}+2=-\sqrt{3}-1
Add -3-2\sqrt{3} to 2+\sqrt{3}.
\left(x+\frac{-\sqrt{2}-\sqrt{6}}{2}\right)^{2}=-\sqrt{3}-1
Factor x^{2}+\left(-\sqrt{2}-\sqrt{6}\right)x+\sqrt{3}+2. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{-\sqrt{2}-\sqrt{6}}{2}\right)^{2}}=\sqrt{-\sqrt{3}-1}
Take the square root of both sides of the equation.
x+\frac{-\sqrt{2}-\sqrt{6}}{2}=i\sqrt{\sqrt{3}+1} x+\frac{-\sqrt{2}-\sqrt{6}}{2}=-i\sqrt{\sqrt{3}+1}
Simplify.
x=\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}+i\sqrt{\sqrt{3}+1} x=-i\sqrt{\sqrt{3}+1}+\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}
Subtract \frac{-\sqrt{2}-\sqrt{6}}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}