Solve for y
y=-\frac{13x^{2}}{4}+\frac{91x}{2}-\frac{589}{4}
Solve for x (complex solution)
x=\frac{2\sqrt{156-13y}}{13}+7
x=-\frac{2\sqrt{156-13y}}{13}+7
Solve for x
x=\frac{2\sqrt{156-13y}}{13}+7
x=-\frac{2\sqrt{156-13y}}{13}+7\text{, }y\leq 12
Graph
Share
Copied to clipboard
2\left(x^{2}+\left(\frac{31-3x}{2}\right)^{2}-8x-6\times \frac{31-3x}{2}\right)+2y=0
Multiply both sides of the equation by 2.
2\left(x^{2}+\frac{\left(31-3x\right)^{2}}{2^{2}}-8x-6\times \frac{31-3x}{2}\right)+2y=0
To raise \frac{31-3x}{2} to a power, raise both numerator and denominator to the power and then divide.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}}+\frac{\left(31-3x\right)^{2}}{2^{2}}-6\times \frac{31-3x}{2}\right)+2y=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-8x times \frac{2^{2}}{2^{2}}.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}+\left(31-3x\right)^{2}}{2^{2}}-6\times \frac{31-3x}{2}\right)+2y=0
Since \frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}} and \frac{\left(31-3x\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\left(\frac{4x^{2}-32x+961-186x+9x^{2}}{2^{2}}-6\times \frac{31-3x}{2}\right)+2y=0
Do the multiplications in \left(x^{2}-8x\right)\times 2^{2}+\left(31-3x\right)^{2}.
2\left(\frac{13x^{2}-218x+961}{2^{2}}-6\times \frac{31-3x}{2}\right)+2y=0
Combine like terms in 4x^{2}-32x+961-186x+9x^{2}.
2\left(\frac{13x^{2}-218x+961}{2^{2}}-3\left(31-3x\right)\right)+2y=0
Cancel out 2, the greatest common factor in 6 and 2.
2\left(\frac{13x^{2}-218x+961}{2^{2}}-93+9x\right)+2y=0
Use the distributive property to multiply -3 by 31-3x.
2\left(\frac{13x^{2}-218x+961}{2^{2}}+\frac{\left(-93+9x\right)\times 2^{2}}{2^{2}}\right)+2y=0
To add or subtract expressions, expand them to make their denominators the same. Multiply -93+9x times \frac{2^{2}}{2^{2}}.
2\times \frac{13x^{2}-218x+961+\left(-93+9x\right)\times 2^{2}}{2^{2}}+2y=0
Since \frac{13x^{2}-218x+961}{2^{2}} and \frac{\left(-93+9x\right)\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{13x^{2}-218x+961-372+36x}{2^{2}}+2y=0
Do the multiplications in 13x^{2}-218x+961+\left(-93+9x\right)\times 2^{2}.
2\times \frac{13x^{2}-182x+589}{2^{2}}+2y=0
Combine like terms in 13x^{2}-218x+961-372+36x.
\frac{2\left(13x^{2}-182x+589\right)}{2^{2}}+2y=0
Express 2\times \frac{13x^{2}-182x+589}{2^{2}} as a single fraction.
\frac{13x^{2}-182x+589}{2}+2y=0
Cancel out 2 in both numerator and denominator.
\frac{13}{2}x^{2}-91x+\frac{589}{2}+2y=0
Divide each term of 13x^{2}-182x+589 by 2 to get \frac{13}{2}x^{2}-91x+\frac{589}{2}.
-91x+\frac{589}{2}+2y=-\frac{13}{2}x^{2}
Subtract \frac{13}{2}x^{2} from both sides. Anything subtracted from zero gives its negation.
\frac{589}{2}+2y=-\frac{13}{2}x^{2}+91x
Add 91x to both sides.
2y=-\frac{13}{2}x^{2}+91x-\frac{589}{2}
Subtract \frac{589}{2} from both sides.
2y=-\frac{13x^{2}}{2}+91x-\frac{589}{2}
The equation is in standard form.
\frac{2y}{2}=\frac{-\frac{13x^{2}}{2}+91x-\frac{589}{2}}{2}
Divide both sides by 2.
y=\frac{-\frac{13x^{2}}{2}+91x-\frac{589}{2}}{2}
Dividing by 2 undoes the multiplication by 2.
y=-\frac{13x^{2}}{4}+\frac{91x}{2}-\frac{589}{4}
Divide -\frac{13x^{2}}{2}+91x-\frac{589}{2} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}