Solve for x
x=-2
x=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
x^{2}+11x^{2}+15x-14=4
Use the distributive property to multiply x+2 by 11x-7 and combine like terms.
12x^{2}+15x-14=4
Combine x^{2} and 11x^{2} to get 12x^{2}.
12x^{2}+15x-14-4=0
Subtract 4 from both sides.
12x^{2}+15x-18=0
Subtract 4 from -14 to get -18.
4x^{2}+5x-6=0
Divide both sides by 3.
a+b=5 ab=4\left(-6\right)=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=-3 b=8
The solution is the pair that gives sum 5.
\left(4x^{2}-3x\right)+\left(8x-6\right)
Rewrite 4x^{2}+5x-6 as \left(4x^{2}-3x\right)+\left(8x-6\right).
x\left(4x-3\right)+2\left(4x-3\right)
Factor out x in the first and 2 in the second group.
\left(4x-3\right)\left(x+2\right)
Factor out common term 4x-3 by using distributive property.
x=\frac{3}{4} x=-2
To find equation solutions, solve 4x-3=0 and x+2=0.
x^{2}+11x^{2}+15x-14=4
Use the distributive property to multiply x+2 by 11x-7 and combine like terms.
12x^{2}+15x-14=4
Combine x^{2} and 11x^{2} to get 12x^{2}.
12x^{2}+15x-14-4=0
Subtract 4 from both sides.
12x^{2}+15x-18=0
Subtract 4 from -14 to get -18.
x=\frac{-15±\sqrt{15^{2}-4\times 12\left(-18\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 15 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 12\left(-18\right)}}{2\times 12}
Square 15.
x=\frac{-15±\sqrt{225-48\left(-18\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-15±\sqrt{225+864}}{2\times 12}
Multiply -48 times -18.
x=\frac{-15±\sqrt{1089}}{2\times 12}
Add 225 to 864.
x=\frac{-15±33}{2\times 12}
Take the square root of 1089.
x=\frac{-15±33}{24}
Multiply 2 times 12.
x=\frac{18}{24}
Now solve the equation x=\frac{-15±33}{24} when ± is plus. Add -15 to 33.
x=\frac{3}{4}
Reduce the fraction \frac{18}{24} to lowest terms by extracting and canceling out 6.
x=-\frac{48}{24}
Now solve the equation x=\frac{-15±33}{24} when ± is minus. Subtract 33 from -15.
x=-2
Divide -48 by 24.
x=\frac{3}{4} x=-2
The equation is now solved.
x^{2}+11x^{2}+15x-14=4
Use the distributive property to multiply x+2 by 11x-7 and combine like terms.
12x^{2}+15x-14=4
Combine x^{2} and 11x^{2} to get 12x^{2}.
12x^{2}+15x=4+14
Add 14 to both sides.
12x^{2}+15x=18
Add 4 and 14 to get 18.
\frac{12x^{2}+15x}{12}=\frac{18}{12}
Divide both sides by 12.
x^{2}+\frac{15}{12}x=\frac{18}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{5}{4}x=\frac{18}{12}
Reduce the fraction \frac{15}{12} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{5}{4}x=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{3}{2}+\left(\frac{5}{8}\right)^{2}
Divide \frac{5}{4}, the coefficient of the x term, by 2 to get \frac{5}{8}. Then add the square of \frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{3}{2}+\frac{25}{64}
Square \frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{121}{64}
Add \frac{3}{2} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}+\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x+\frac{5}{8}=\frac{11}{8} x+\frac{5}{8}=-\frac{11}{8}
Simplify.
x=\frac{3}{4} x=-2
Subtract \frac{5}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}