Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{79}{48}x+\frac{5}{24}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{79}{48}±\sqrt{\left(\frac{79}{48}\right)^{2}-4\times \frac{5}{24}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{79}{48} for b, and \frac{5}{24} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{79}{48}±\sqrt{\frac{6241}{2304}-4\times \frac{5}{24}}}{2}
Square \frac{79}{48} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{79}{48}±\sqrt{\frac{6241}{2304}-\frac{5}{6}}}{2}
Multiply -4 times \frac{5}{24}.
x=\frac{-\frac{79}{48}±\sqrt{\frac{4321}{2304}}}{2}
Add \frac{6241}{2304} to -\frac{5}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{79}{48}±\frac{\sqrt{4321}}{48}}{2}
Take the square root of \frac{4321}{2304}.
x=\frac{\sqrt{4321}-79}{2\times 48}
Now solve the equation x=\frac{-\frac{79}{48}±\frac{\sqrt{4321}}{48}}{2} when ± is plus. Add -\frac{79}{48} to \frac{\sqrt{4321}}{48}.
x=\frac{\sqrt{4321}-79}{96}
Divide \frac{-79+\sqrt{4321}}{48} by 2.
x=\frac{-\sqrt{4321}-79}{2\times 48}
Now solve the equation x=\frac{-\frac{79}{48}±\frac{\sqrt{4321}}{48}}{2} when ± is minus. Subtract \frac{\sqrt{4321}}{48} from -\frac{79}{48}.
x=\frac{-\sqrt{4321}-79}{96}
Divide \frac{-79-\sqrt{4321}}{48} by 2.
x=\frac{\sqrt{4321}-79}{96} x=\frac{-\sqrt{4321}-79}{96}
The equation is now solved.
x^{2}+\frac{79}{48}x+\frac{5}{24}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{79}{48}x+\frac{5}{24}-\frac{5}{24}=-\frac{5}{24}
Subtract \frac{5}{24} from both sides of the equation.
x^{2}+\frac{79}{48}x=-\frac{5}{24}
Subtracting \frac{5}{24} from itself leaves 0.
x^{2}+\frac{79}{48}x+\left(\frac{79}{96}\right)^{2}=-\frac{5}{24}+\left(\frac{79}{96}\right)^{2}
Divide \frac{79}{48}, the coefficient of the x term, by 2 to get \frac{79}{96}. Then add the square of \frac{79}{96} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{79}{48}x+\frac{6241}{9216}=-\frac{5}{24}+\frac{6241}{9216}
Square \frac{79}{96} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{79}{48}x+\frac{6241}{9216}=\frac{4321}{9216}
Add -\frac{5}{24} to \frac{6241}{9216} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{79}{96}\right)^{2}=\frac{4321}{9216}
Factor x^{2}+\frac{79}{48}x+\frac{6241}{9216}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{79}{96}\right)^{2}}=\sqrt{\frac{4321}{9216}}
Take the square root of both sides of the equation.
x+\frac{79}{96}=\frac{\sqrt{4321}}{96} x+\frac{79}{96}=-\frac{\sqrt{4321}}{96}
Simplify.
x=\frac{\sqrt{4321}-79}{96} x=\frac{-\sqrt{4321}-79}{96}
Subtract \frac{79}{96} from both sides of the equation.