Solve for x
x = \frac{\sqrt{97} - 5}{4} \approx 1.21221445
x=\frac{-\sqrt{97}-5}{4}\approx -3.71221445
Graph
Share
Copied to clipboard
x^{2}+\frac{5}{2}x-\frac{9}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{5}{2}±\sqrt{\left(\frac{5}{2}\right)^{2}-4\left(-\frac{9}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{5}{2} for b, and -\frac{9}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}-4\left(-\frac{9}{2}\right)}}{2}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{5}{2}±\sqrt{\frac{25}{4}+18}}{2}
Multiply -4 times -\frac{9}{2}.
x=\frac{-\frac{5}{2}±\sqrt{\frac{97}{4}}}{2}
Add \frac{25}{4} to 18.
x=\frac{-\frac{5}{2}±\frac{\sqrt{97}}{2}}{2}
Take the square root of \frac{97}{4}.
x=\frac{\sqrt{97}-5}{2\times 2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{97}}{2}}{2} when ± is plus. Add -\frac{5}{2} to \frac{\sqrt{97}}{2}.
x=\frac{\sqrt{97}-5}{4}
Divide \frac{-5+\sqrt{97}}{2} by 2.
x=\frac{-\sqrt{97}-5}{2\times 2}
Now solve the equation x=\frac{-\frac{5}{2}±\frac{\sqrt{97}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{97}}{2} from -\frac{5}{2}.
x=\frac{-\sqrt{97}-5}{4}
Divide \frac{-5-\sqrt{97}}{2} by 2.
x=\frac{\sqrt{97}-5}{4} x=\frac{-\sqrt{97}-5}{4}
The equation is now solved.
x^{2}+\frac{5}{2}x-\frac{9}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{5}{2}x-\frac{9}{2}-\left(-\frac{9}{2}\right)=-\left(-\frac{9}{2}\right)
Add \frac{9}{2} to both sides of the equation.
x^{2}+\frac{5}{2}x=-\left(-\frac{9}{2}\right)
Subtracting -\frac{9}{2} from itself leaves 0.
x^{2}+\frac{5}{2}x=\frac{9}{2}
Subtract -\frac{9}{2} from 0.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{9}{2}+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{9}{2}+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{97}{16}
Add \frac{9}{2} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{4}\right)^{2}=\frac{97}{16}
Factor x^{2}+\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{97}{16}}
Take the square root of both sides of the equation.
x+\frac{5}{4}=\frac{\sqrt{97}}{4} x+\frac{5}{4}=-\frac{\sqrt{97}}{4}
Simplify.
x=\frac{\sqrt{97}-5}{4} x=\frac{-\sqrt{97}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}