Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x+\frac{3}{10}\right)=0
Factor out x.
x=0 x=-\frac{3}{10}
To find equation solutions, solve x=0 and x+\frac{3}{10}=0.
x^{2}+\frac{3}{10}x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{3}{10}±\sqrt{\left(\frac{3}{10}\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{3}{10} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{10}±\frac{3}{10}}{2}
Take the square root of \left(\frac{3}{10}\right)^{2}.
x=\frac{0}{2}
Now solve the equation x=\frac{-\frac{3}{10}±\frac{3}{10}}{2} when ± is plus. Add -\frac{3}{10} to \frac{3}{10} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by 2.
x=-\frac{\frac{3}{5}}{2}
Now solve the equation x=\frac{-\frac{3}{10}±\frac{3}{10}}{2} when ± is minus. Subtract \frac{3}{10} from -\frac{3}{10} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{3}{10}
Divide -\frac{3}{5} by 2.
x=0 x=-\frac{3}{10}
The equation is now solved.
x^{2}+\frac{3}{10}x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{3}{10}x+\left(\frac{3}{20}\right)^{2}=\left(\frac{3}{20}\right)^{2}
Divide \frac{3}{10}, the coefficient of the x term, by 2 to get \frac{3}{20}. Then add the square of \frac{3}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{10}x+\frac{9}{400}=\frac{9}{400}
Square \frac{3}{20} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{3}{20}\right)^{2}=\frac{9}{400}
Factor x^{2}+\frac{3}{10}x+\frac{9}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{20}\right)^{2}}=\sqrt{\frac{9}{400}}
Take the square root of both sides of the equation.
x+\frac{3}{20}=\frac{3}{20} x+\frac{3}{20}=-\frac{3}{20}
Simplify.
x=0 x=-\frac{3}{10}
Subtract \frac{3}{20} from both sides of the equation.