Solve for x
x = \frac{\sqrt{4582} - 1}{3} \approx 22.230157334
x=\frac{-\sqrt{4582}-1}{3}\approx -22.896824001
Graph
Share
Copied to clipboard
x^{2}+\frac{2}{3}x-509=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-509\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{2}{3} for b, and -509 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-509\right)}}{2}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+2036}}{2}
Multiply -4 times -509.
x=\frac{-\frac{2}{3}±\sqrt{\frac{18328}{9}}}{2}
Add \frac{4}{9} to 2036.
x=\frac{-\frac{2}{3}±\frac{2\sqrt{4582}}{3}}{2}
Take the square root of \frac{18328}{9}.
x=\frac{2\sqrt{4582}-2}{2\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{2\sqrt{4582}}{3}}{2} when ± is plus. Add -\frac{2}{3} to \frac{2\sqrt{4582}}{3}.
x=\frac{\sqrt{4582}-1}{3}
Divide \frac{-2+2\sqrt{4582}}{3} by 2.
x=\frac{-2\sqrt{4582}-2}{2\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{2\sqrt{4582}}{3}}{2} when ± is minus. Subtract \frac{2\sqrt{4582}}{3} from -\frac{2}{3}.
x=\frac{-\sqrt{4582}-1}{3}
Divide \frac{-2-2\sqrt{4582}}{3} by 2.
x=\frac{\sqrt{4582}-1}{3} x=\frac{-\sqrt{4582}-1}{3}
The equation is now solved.
x^{2}+\frac{2}{3}x-509=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{2}{3}x-509-\left(-509\right)=-\left(-509\right)
Add 509 to both sides of the equation.
x^{2}+\frac{2}{3}x=-\left(-509\right)
Subtracting -509 from itself leaves 0.
x^{2}+\frac{2}{3}x=509
Subtract -509 from 0.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=509+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=509+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{4582}{9}
Add 509 to \frac{1}{9}.
\left(x+\frac{1}{3}\right)^{2}=\frac{4582}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{4582}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{4582}}{3} x+\frac{1}{3}=-\frac{\sqrt{4582}}{3}
Simplify.
x=\frac{\sqrt{4582}-1}{3} x=\frac{-\sqrt{4582}-1}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}