Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{2}{3}x-\frac{1}{6}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{2}{3}±\sqrt{\left(\frac{2}{3}\right)^{2}-4\left(-\frac{1}{6}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{2}{3} for b, and -\frac{1}{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}-4\left(-\frac{1}{6}\right)}}{2}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{2}{3}±\sqrt{\frac{4}{9}+\frac{2}{3}}}{2}
Multiply -4 times -\frac{1}{6}.
x=\frac{-\frac{2}{3}±\sqrt{\frac{10}{9}}}{2}
Add \frac{4}{9} to \frac{2}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2}
Take the square root of \frac{10}{9}.
x=\frac{\sqrt{10}-2}{2\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2} when ± is plus. Add -\frac{2}{3} to \frac{\sqrt{10}}{3}.
x=\frac{\sqrt{10}}{6}-\frac{1}{3}
Divide \frac{-2+\sqrt{10}}{3} by 2.
x=\frac{-\sqrt{10}-2}{2\times 3}
Now solve the equation x=\frac{-\frac{2}{3}±\frac{\sqrt{10}}{3}}{2} when ± is minus. Subtract \frac{\sqrt{10}}{3} from -\frac{2}{3}.
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Divide \frac{-2-\sqrt{10}}{3} by 2.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
The equation is now solved.
x^{2}+\frac{2}{3}x-\frac{1}{6}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{2}{3}x-\frac{1}{6}-\left(-\frac{1}{6}\right)=-\left(-\frac{1}{6}\right)
Add \frac{1}{6} to both sides of the equation.
x^{2}+\frac{2}{3}x=-\left(-\frac{1}{6}\right)
Subtracting -\frac{1}{6} from itself leaves 0.
x^{2}+\frac{2}{3}x=\frac{1}{6}
Subtract -\frac{1}{6} from 0.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{6}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{6}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{5}{18}
Add \frac{1}{6} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{5}{18}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{5}{18}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{10}}{6} x+\frac{1}{3}=-\frac{\sqrt{10}}{6}
Simplify.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.