Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+11x+12=0
Multiply both sides of the equation by 2.
a+b=11 ab=2\times 12=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,24 2,12 3,8 4,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 24.
1+24=25 2+12=14 3+8=11 4+6=10
Calculate the sum for each pair.
a=3 b=8
The solution is the pair that gives sum 11.
\left(2x^{2}+3x\right)+\left(8x+12\right)
Rewrite 2x^{2}+11x+12 as \left(2x^{2}+3x\right)+\left(8x+12\right).
x\left(2x+3\right)+4\left(2x+3\right)
Factor out x in the first and 4 in the second group.
\left(2x+3\right)\left(x+4\right)
Factor out common term 2x+3 by using distributive property.
x=-\frac{3}{2} x=-4
To find equation solutions, solve 2x+3=0 and x+4=0.
2x^{2}+11x+12=0
Multiply both sides of the equation by 2.
x=\frac{-11±\sqrt{11^{2}-4\times 2\times 12}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 11 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 2\times 12}}{2\times 2}
Square 11.
x=\frac{-11±\sqrt{121-8\times 12}}{2\times 2}
Multiply -4 times 2.
x=\frac{-11±\sqrt{121-96}}{2\times 2}
Multiply -8 times 12.
x=\frac{-11±\sqrt{25}}{2\times 2}
Add 121 to -96.
x=\frac{-11±5}{2\times 2}
Take the square root of 25.
x=\frac{-11±5}{4}
Multiply 2 times 2.
x=-\frac{6}{4}
Now solve the equation x=\frac{-11±5}{4} when ± is plus. Add -11 to 5.
x=-\frac{3}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{4}
Now solve the equation x=\frac{-11±5}{4} when ± is minus. Subtract 5 from -11.
x=-4
Divide -16 by 4.
x=-\frac{3}{2} x=-4
The equation is now solved.
2x^{2}+11x+12=0
Multiply both sides of the equation by 2.
2x^{2}+11x=-12
Subtract 12 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+11x}{2}=-\frac{12}{2}
Divide both sides by 2.
x^{2}+\frac{11}{2}x=-\frac{12}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{11}{2}x=-6
Divide -12 by 2.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=-6+\left(\frac{11}{4}\right)^{2}
Divide \frac{11}{2}, the coefficient of the x term, by 2 to get \frac{11}{4}. Then add the square of \frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{2}x+\frac{121}{16}=-6+\frac{121}{16}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{25}{16}
Add -6 to \frac{121}{16}.
\left(x+\frac{11}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}+\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x+\frac{11}{4}=\frac{5}{4} x+\frac{11}{4}=-\frac{5}{4}
Simplify.
x=-\frac{3}{2} x=-4
Subtract \frac{11}{4} from both sides of the equation.