Skip to main content
Solve for x
Tick mark Image
Graph

Share

\frac{x^{2}}{19.6}=9.3
Multiply 2 and 9.8 to get 19.6.
x^{2}=9.3\times 19.6
Multiply both sides by 19.6.
x^{2}=182.28
Multiply 9.3 and 19.6 to get 182.28.
x=\frac{7\sqrt{93}}{5} x=-\frac{7\sqrt{93}}{5}
Take the square root of both sides of the equation.
\frac{x^{2}}{19.6}=9.3
Multiply 2 and 9.8 to get 19.6.
\frac{x^{2}}{19.6}-9.3=0
Subtract 9.3 from both sides.
\frac{5}{98}x^{2}-9.3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{5}{98}\left(-9.3\right)}}{2\times \frac{5}{98}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{98} for a, 0 for b, and -9.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{5}{98}\left(-9.3\right)}}{2\times \frac{5}{98}}
Square 0.
x=\frac{0±\sqrt{-\frac{10}{49}\left(-9.3\right)}}{2\times \frac{5}{98}}
Multiply -4 times \frac{5}{98}.
x=\frac{0±\sqrt{\frac{93}{49}}}{2\times \frac{5}{98}}
Multiply -\frac{10}{49} times -9.3 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{\sqrt{93}}{7}}{2\times \frac{5}{98}}
Take the square root of \frac{93}{49}.
x=\frac{0±\frac{\sqrt{93}}{7}}{\frac{5}{49}}
Multiply 2 times \frac{5}{98}.
x=\frac{7\sqrt{93}}{5}
Now solve the equation x=\frac{0±\frac{\sqrt{93}}{7}}{\frac{5}{49}} when ± is plus.
x=-\frac{7\sqrt{93}}{5}
Now solve the equation x=\frac{0±\frac{\sqrt{93}}{7}}{\frac{5}{49}} when ± is minus.
x=\frac{7\sqrt{93}}{5} x=-\frac{7\sqrt{93}}{5}
The equation is now solved.