Solve for x
x = \frac{7 \sqrt{93}}{5} \approx 13.501111065
x = -\frac{7 \sqrt{93}}{5} \approx -13.501111065
Graph
Share
Copied to clipboard
\frac{x^{2}}{19.6}=9.3
Multiply 2 and 9.8 to get 19.6.
x^{2}=9.3\times 19.6
Multiply both sides by 19.6.
x^{2}=182.28
Multiply 9.3 and 19.6 to get 182.28.
x=\frac{7\sqrt{93}}{5} x=-\frac{7\sqrt{93}}{5}
Take the square root of both sides of the equation.
\frac{x^{2}}{19.6}=9.3
Multiply 2 and 9.8 to get 19.6.
\frac{x^{2}}{19.6}-9.3=0
Subtract 9.3 from both sides.
\frac{5}{98}x^{2}-9.3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{5}{98}\left(-9.3\right)}}{2\times \frac{5}{98}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{98} for a, 0 for b, and -9.3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{5}{98}\left(-9.3\right)}}{2\times \frac{5}{98}}
Square 0.
x=\frac{0±\sqrt{-\frac{10}{49}\left(-9.3\right)}}{2\times \frac{5}{98}}
Multiply -4 times \frac{5}{98}.
x=\frac{0±\sqrt{\frac{93}{49}}}{2\times \frac{5}{98}}
Multiply -\frac{10}{49} times -9.3 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{\sqrt{93}}{7}}{2\times \frac{5}{98}}
Take the square root of \frac{93}{49}.
x=\frac{0±\frac{\sqrt{93}}{7}}{\frac{5}{49}}
Multiply 2 times \frac{5}{98}.
x=\frac{7\sqrt{93}}{5}
Now solve the equation x=\frac{0±\frac{\sqrt{93}}{7}}{\frac{5}{49}} when ± is plus.
x=-\frac{7\sqrt{93}}{5}
Now solve the equation x=\frac{0±\frac{\sqrt{93}}{7}}{\frac{5}{49}} when ± is minus.
x=\frac{7\sqrt{93}}{5} x=-\frac{7\sqrt{93}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}