Solve for x (complex solution)
x=-\sqrt{4\sqrt{3}-6.926642}\approx -0.039512407
x=\sqrt{4\sqrt{3}-6.926642}\approx 0.039512407
Solve for x
x=\frac{\sqrt{16\sqrt{3}-27.706568}}{2}\approx 0.039512407
x=-\frac{\sqrt{16\sqrt{3}-27.706568}}{2}\approx -0.039512407
Graph
Share
Copied to clipboard
x^{2}=4\sqrt{3}-2\times 3.463321
Calculate 1.861 to the power of 2 and get 3.463321.
x^{2}=4\sqrt{3}-6.926642
Multiply 2 and 3.463321 to get 6.926642.
x=\sqrt{4\sqrt{3}-6.926642} x=-\sqrt{4\sqrt{3}-6.926642}
The equation is now solved.
x^{2}=4\sqrt{3}-2\times 3.463321
Calculate 1.861 to the power of 2 and get 3.463321.
x^{2}=4\sqrt{3}-6.926642
Multiply 2 and 3.463321 to get 6.926642.
x^{2}-4\sqrt{3}=-6.926642
Subtract 4\sqrt{3} from both sides.
x^{2}-4\sqrt{3}+6.926642=0
Add 6.926642 to both sides.
x^{2}+6.926642-4\sqrt{3}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(6.926642-4\sqrt{3}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -4\sqrt{3}+6.926642 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(6.926642-4\sqrt{3}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{16\sqrt{3}-27.706568}}{2}
Multiply -4 times -4\sqrt{3}+6.926642.
x=\frac{\sqrt{16\sqrt{3}-27.706568}}{2}
Now solve the equation x=\frac{0±\sqrt{16\sqrt{3}-27.706568}}{2} when ± is plus.
x=-\frac{\sqrt{16\sqrt{3}-27.706568}}{2}
Now solve the equation x=\frac{0±\sqrt{16\sqrt{3}-27.706568}}{2} when ± is minus.
x=\frac{\sqrt{16\sqrt{3}-27.706568}}{2} x=-\frac{\sqrt{16\sqrt{3}-27.706568}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}