Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=6
Graph
Share
Copied to clipboard
x^{2}-\frac{17}{3}x=2
Subtract \frac{17}{3}x from both sides.
x^{2}-\frac{17}{3}x-2=0
Subtract 2 from both sides.
x=\frac{-\left(-\frac{17}{3}\right)±\sqrt{\left(-\frac{17}{3}\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{17}{3} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{17}{3}\right)±\sqrt{\frac{289}{9}-4\left(-2\right)}}{2}
Square -\frac{17}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{17}{3}\right)±\sqrt{\frac{289}{9}+8}}{2}
Multiply -4 times -2.
x=\frac{-\left(-\frac{17}{3}\right)±\sqrt{\frac{361}{9}}}{2}
Add \frac{289}{9} to 8.
x=\frac{-\left(-\frac{17}{3}\right)±\frac{19}{3}}{2}
Take the square root of \frac{361}{9}.
x=\frac{\frac{17}{3}±\frac{19}{3}}{2}
The opposite of -\frac{17}{3} is \frac{17}{3}.
x=\frac{12}{2}
Now solve the equation x=\frac{\frac{17}{3}±\frac{19}{3}}{2} when ± is plus. Add \frac{17}{3} to \frac{19}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=6
Divide 12 by 2.
x=-\frac{\frac{2}{3}}{2}
Now solve the equation x=\frac{\frac{17}{3}±\frac{19}{3}}{2} when ± is minus. Subtract \frac{19}{3} from \frac{17}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{1}{3}
Divide -\frac{2}{3} by 2.
x=6 x=-\frac{1}{3}
The equation is now solved.
x^{2}-\frac{17}{3}x=2
Subtract \frac{17}{3}x from both sides.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=2+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=2+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{361}{36}
Add 2 to \frac{289}{36}.
\left(x-\frac{17}{6}\right)^{2}=\frac{361}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{361}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{19}{6} x-\frac{17}{6}=-\frac{19}{6}
Simplify.
x=6 x=-\frac{1}{3}
Add \frac{17}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}