Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=\frac{i\sqrt{8\sqrt{3}-2}}{2} x=-\frac{i\sqrt{8\sqrt{3}-2}}{2}
The equation is now solved.
x^{2}-\frac{1}{2}=-2\sqrt{3}
Subtract \frac{1}{2} from both sides.
x^{2}-\frac{1}{2}+2\sqrt{3}=0
Add 2\sqrt{3} to both sides.
x^{2}+2\sqrt{3}-\frac{1}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(2\sqrt{3}-\frac{1}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1}{2}+2\sqrt{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(2\sqrt{3}-\frac{1}{2}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{2-8\sqrt{3}}}{2}
Multiply -4 times -\frac{1}{2}+2\sqrt{3}.
x=\frac{0±i\sqrt{8\sqrt{3}-2}}{2}
Take the square root of 2-8\sqrt{3}.
x=\frac{i\sqrt{8\sqrt{3}-2}}{2}
Now solve the equation x=\frac{0±i\sqrt{8\sqrt{3}-2}}{2} when ± is plus.
x=-\frac{i\sqrt{8\sqrt{3}-2}}{2}
Now solve the equation x=\frac{0±i\sqrt{8\sqrt{3}-2}}{2} when ± is minus.
x=\frac{i\sqrt{8\sqrt{3}-2}}{2} x=-\frac{i\sqrt{8\sqrt{3}-2}}{2}
The equation is now solved.