Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{6}-y^{2}\right)\left(x^{6}+y^{2}\right)
Rewrite x^{12}-y^{4} as \left(x^{6}\right)^{2}-\left(y^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-y\right)\left(x^{3}+y\right)
Consider x^{6}-y^{2}. Rewrite x^{6}-y^{2} as \left(x^{3}\right)^{2}-y^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-y\right)\left(x^{3}+y\right)\left(x^{6}+y^{2}\right)
Rewrite the complete factored expression.