Solve for x (complex solution)
x=-\frac{i\sqrt{2\left(\sqrt{129}+1\right)}}{2}\approx -0-2.485741005i
x=\frac{i\sqrt{2\left(\sqrt{129}+1\right)}}{2}\approx 2.485741005i
x = \frac{\sqrt{2 {(\sqrt{129} - 1)}}}{2} \approx 2.2757215
x = -\frac{\sqrt{2 {(\sqrt{129} - 1)}}}{2} \approx -2.2757215
Solve for x
x = \frac{\sqrt{2 {(\sqrt{129} - 1)}}}{2} \approx 2.2757215
x = -\frac{\sqrt{2 {(\sqrt{129} - 1)}}}{2} \approx -2.2757215
Graph
Share
Copied to clipboard
x^{4}+x^{2}=32
Calculate 2 to the power of 2 and get 4.
x^{4}+x^{2}-32=0
Subtract 32 from both sides.
t^{2}+t-32=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-32\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -32 for c in the quadratic formula.
t=\frac{-1±\sqrt{129}}{2}
Do the calculations.
t=\frac{\sqrt{129}-1}{2} t=\frac{-\sqrt{129}-1}{2}
Solve the equation t=\frac{-1±\sqrt{129}}{2} when ± is plus and when ± is minus.
x=-\sqrt{\frac{\sqrt{129}-1}{2}} x=\sqrt{\frac{\sqrt{129}-1}{2}} x=-i\sqrt{\frac{\sqrt{129}+1}{2}} x=i\sqrt{\frac{\sqrt{129}+1}{2}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{4}+x^{2}=32
Calculate 2 to the power of 2 and get 4.
x^{4}+x^{2}-32=0
Subtract 32 from both sides.
t^{2}+t-32=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-32\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -32 for c in the quadratic formula.
t=\frac{-1±\sqrt{129}}{2}
Do the calculations.
t=\frac{\sqrt{129}-1}{2} t=\frac{-\sqrt{129}-1}{2}
Solve the equation t=\frac{-1±\sqrt{129}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{2\sqrt{129}-2}}{2} x=-\frac{\sqrt{2\sqrt{129}-2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}