Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}-8t+12=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t^{2}-8t+12-4=4-4
Subtract 4 from both sides of the equation.
t^{2}-8t+12-4=0
Subtracting 4 from itself leaves 0.
t^{2}-8t+8=0
Subtract 4 from 12.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-8\right)±\sqrt{64-4\times 8}}{2}
Square -8.
t=\frac{-\left(-8\right)±\sqrt{64-32}}{2}
Multiply -4 times 8.
t=\frac{-\left(-8\right)±\sqrt{32}}{2}
Add 64 to -32.
t=\frac{-\left(-8\right)±4\sqrt{2}}{2}
Take the square root of 32.
t=\frac{8±4\sqrt{2}}{2}
The opposite of -8 is 8.
t=\frac{4\sqrt{2}+8}{2}
Now solve the equation t=\frac{8±4\sqrt{2}}{2} when ± is plus. Add 8 to 4\sqrt{2}.
t=2\sqrt{2}+4
Divide 8+4\sqrt{2} by 2.
t=\frac{8-4\sqrt{2}}{2}
Now solve the equation t=\frac{8±4\sqrt{2}}{2} when ± is minus. Subtract 4\sqrt{2} from 8.
t=4-2\sqrt{2}
Divide 8-4\sqrt{2} by 2.
t=2\sqrt{2}+4 t=4-2\sqrt{2}
The equation is now solved.
t^{2}-8t+12=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}-8t+12-12=4-12
Subtract 12 from both sides of the equation.
t^{2}-8t=4-12
Subtracting 12 from itself leaves 0.
t^{2}-8t=-8
Subtract 12 from 4.
t^{2}-8t+\left(-4\right)^{2}=-8+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-8t+16=-8+16
Square -4.
t^{2}-8t+16=8
Add -8 to 16.
\left(t-4\right)^{2}=8
Factor t^{2}-8t+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-4\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
t-4=2\sqrt{2} t-4=-2\sqrt{2}
Simplify.
t=2\sqrt{2}+4 t=4-2\sqrt{2}
Add 4 to both sides of the equation.