Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}-10t-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-10\right)±\sqrt{100-4\left(-10\right)}}{2}
Square -10.
t=\frac{-\left(-10\right)±\sqrt{100+40}}{2}
Multiply -4 times -10.
t=\frac{-\left(-10\right)±\sqrt{140}}{2}
Add 100 to 40.
t=\frac{-\left(-10\right)±2\sqrt{35}}{2}
Take the square root of 140.
t=\frac{10±2\sqrt{35}}{2}
The opposite of -10 is 10.
t=\frac{2\sqrt{35}+10}{2}
Now solve the equation t=\frac{10±2\sqrt{35}}{2} when ± is plus. Add 10 to 2\sqrt{35}.
t=\sqrt{35}+5
Divide 10+2\sqrt{35} by 2.
t=\frac{10-2\sqrt{35}}{2}
Now solve the equation t=\frac{10±2\sqrt{35}}{2} when ± is minus. Subtract 2\sqrt{35} from 10.
t=5-\sqrt{35}
Divide 10-2\sqrt{35} by 2.
t=\sqrt{35}+5 t=5-\sqrt{35}
The equation is now solved.
t^{2}-10t-10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}-10t-10-\left(-10\right)=-\left(-10\right)
Add 10 to both sides of the equation.
t^{2}-10t=-\left(-10\right)
Subtracting -10 from itself leaves 0.
t^{2}-10t=10
Subtract -10 from 0.
t^{2}-10t+\left(-5\right)^{2}=10+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-10t+25=10+25
Square -5.
t^{2}-10t+25=35
Add 10 to 25.
\left(t-5\right)^{2}=35
Factor t^{2}-10t+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-5\right)^{2}}=\sqrt{35}
Take the square root of both sides of the equation.
t-5=\sqrt{35} t-5=-\sqrt{35}
Simplify.
t=\sqrt{35}+5 t=5-\sqrt{35}
Add 5 to both sides of the equation.