Solve for t
t = \frac{5 \sqrt{185} - 25}{2} \approx 21.503676272
t=\frac{-5\sqrt{185}-25}{2}\approx -46.503676272
Share
Copied to clipboard
t^{2}+25t-1000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-25±\sqrt{25^{2}-4\left(-1000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 25 for b, and -1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-25±\sqrt{625-4\left(-1000\right)}}{2}
Square 25.
t=\frac{-25±\sqrt{625+4000}}{2}
Multiply -4 times -1000.
t=\frac{-25±\sqrt{4625}}{2}
Add 625 to 4000.
t=\frac{-25±5\sqrt{185}}{2}
Take the square root of 4625.
t=\frac{5\sqrt{185}-25}{2}
Now solve the equation t=\frac{-25±5\sqrt{185}}{2} when ± is plus. Add -25 to 5\sqrt{185}.
t=\frac{-5\sqrt{185}-25}{2}
Now solve the equation t=\frac{-25±5\sqrt{185}}{2} when ± is minus. Subtract 5\sqrt{185} from -25.
t=\frac{5\sqrt{185}-25}{2} t=\frac{-5\sqrt{185}-25}{2}
The equation is now solved.
t^{2}+25t-1000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
t^{2}+25t-1000-\left(-1000\right)=-\left(-1000\right)
Add 1000 to both sides of the equation.
t^{2}+25t=-\left(-1000\right)
Subtracting -1000 from itself leaves 0.
t^{2}+25t=1000
Subtract -1000 from 0.
t^{2}+25t+\left(\frac{25}{2}\right)^{2}=1000+\left(\frac{25}{2}\right)^{2}
Divide 25, the coefficient of the x term, by 2 to get \frac{25}{2}. Then add the square of \frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+25t+\frac{625}{4}=1000+\frac{625}{4}
Square \frac{25}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+25t+\frac{625}{4}=\frac{4625}{4}
Add 1000 to \frac{625}{4}.
\left(t+\frac{25}{2}\right)^{2}=\frac{4625}{4}
Factor t^{2}+25t+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{25}{2}\right)^{2}}=\sqrt{\frac{4625}{4}}
Take the square root of both sides of the equation.
t+\frac{25}{2}=\frac{5\sqrt{185}}{2} t+\frac{25}{2}=-\frac{5\sqrt{185}}{2}
Simplify.
t=\frac{5\sqrt{185}-25}{2} t=\frac{-5\sqrt{185}-25}{2}
Subtract \frac{25}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}