Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}-31+t=0
Subtract 42 from 11 to get -31.
t^{2}+t-31=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1±\sqrt{1^{2}-4\left(-31\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1±\sqrt{1-4\left(-31\right)}}{2}
Square 1.
t=\frac{-1±\sqrt{1+124}}{2}
Multiply -4 times -31.
t=\frac{-1±\sqrt{125}}{2}
Add 1 to 124.
t=\frac{-1±5\sqrt{5}}{2}
Take the square root of 125.
t=\frac{5\sqrt{5}-1}{2}
Now solve the equation t=\frac{-1±5\sqrt{5}}{2} when ± is plus. Add -1 to 5\sqrt{5}.
t=\frac{-5\sqrt{5}-1}{2}
Now solve the equation t=\frac{-1±5\sqrt{5}}{2} when ± is minus. Subtract 5\sqrt{5} from -1.
t=\frac{5\sqrt{5}-1}{2} t=\frac{-5\sqrt{5}-1}{2}
The equation is now solved.
t^{2}-31+t=0
Subtract 42 from 11 to get -31.
t^{2}+t=31
Add 31 to both sides. Anything plus zero gives itself.
t^{2}+t+\left(\frac{1}{2}\right)^{2}=31+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+t+\frac{1}{4}=31+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
t^{2}+t+\frac{1}{4}=\frac{125}{4}
Add 31 to \frac{1}{4}.
\left(t+\frac{1}{2}\right)^{2}=\frac{125}{4}
Factor t^{2}+t+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{2}\right)^{2}}=\sqrt{\frac{125}{4}}
Take the square root of both sides of the equation.
t+\frac{1}{2}=\frac{5\sqrt{5}}{2} t+\frac{1}{2}=-\frac{5\sqrt{5}}{2}
Simplify.
t=\frac{5\sqrt{5}-1}{2} t=\frac{-5\sqrt{5}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.