Factor
\left(s-11\right)\left(s-3\right)
Evaluate
\left(s-11\right)\left(s-3\right)
Share
Copied to clipboard
a+b=-14 ab=1\times 33=33
Factor the expression by grouping. First, the expression needs to be rewritten as s^{2}+as+bs+33. To find a and b, set up a system to be solved.
-1,-33 -3,-11
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 33.
-1-33=-34 -3-11=-14
Calculate the sum for each pair.
a=-11 b=-3
The solution is the pair that gives sum -14.
\left(s^{2}-11s\right)+\left(-3s+33\right)
Rewrite s^{2}-14s+33 as \left(s^{2}-11s\right)+\left(-3s+33\right).
s\left(s-11\right)-3\left(s-11\right)
Factor out s in the first and -3 in the second group.
\left(s-11\right)\left(s-3\right)
Factor out common term s-11 by using distributive property.
s^{2}-14s+33=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 33}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-\left(-14\right)±\sqrt{196-4\times 33}}{2}
Square -14.
s=\frac{-\left(-14\right)±\sqrt{196-132}}{2}
Multiply -4 times 33.
s=\frac{-\left(-14\right)±\sqrt{64}}{2}
Add 196 to -132.
s=\frac{-\left(-14\right)±8}{2}
Take the square root of 64.
s=\frac{14±8}{2}
The opposite of -14 is 14.
s=\frac{22}{2}
Now solve the equation s=\frac{14±8}{2} when ± is plus. Add 14 to 8.
s=11
Divide 22 by 2.
s=\frac{6}{2}
Now solve the equation s=\frac{14±8}{2} when ± is minus. Subtract 8 from 14.
s=3
Divide 6 by 2.
s^{2}-14s+33=\left(s-11\right)\left(s-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 11 for x_{1} and 3 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}