Solve for r
r = \frac{\sqrt{433} + 23}{2} \approx 21.904326023
r = \frac{23 - \sqrt{433}}{2} \approx 1.095673977
Share
Copied to clipboard
r^{2}-23r+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 24}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -23 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-23\right)±\sqrt{529-4\times 24}}{2}
Square -23.
r=\frac{-\left(-23\right)±\sqrt{529-96}}{2}
Multiply -4 times 24.
r=\frac{-\left(-23\right)±\sqrt{433}}{2}
Add 529 to -96.
r=\frac{23±\sqrt{433}}{2}
The opposite of -23 is 23.
r=\frac{\sqrt{433}+23}{2}
Now solve the equation r=\frac{23±\sqrt{433}}{2} when ± is plus. Add 23 to \sqrt{433}.
r=\frac{23-\sqrt{433}}{2}
Now solve the equation r=\frac{23±\sqrt{433}}{2} when ± is minus. Subtract \sqrt{433} from 23.
r=\frac{\sqrt{433}+23}{2} r=\frac{23-\sqrt{433}}{2}
The equation is now solved.
r^{2}-23r+24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
r^{2}-23r+24-24=-24
Subtract 24 from both sides of the equation.
r^{2}-23r=-24
Subtracting 24 from itself leaves 0.
r^{2}-23r+\left(-\frac{23}{2}\right)^{2}=-24+\left(-\frac{23}{2}\right)^{2}
Divide -23, the coefficient of the x term, by 2 to get -\frac{23}{2}. Then add the square of -\frac{23}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-23r+\frac{529}{4}=-24+\frac{529}{4}
Square -\frac{23}{2} by squaring both the numerator and the denominator of the fraction.
r^{2}-23r+\frac{529}{4}=\frac{433}{4}
Add -24 to \frac{529}{4}.
\left(r-\frac{23}{2}\right)^{2}=\frac{433}{4}
Factor r^{2}-23r+\frac{529}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{23}{2}\right)^{2}}=\sqrt{\frac{433}{4}}
Take the square root of both sides of the equation.
r-\frac{23}{2}=\frac{\sqrt{433}}{2} r-\frac{23}{2}=-\frac{\sqrt{433}}{2}
Simplify.
r=\frac{\sqrt{433}+23}{2} r=\frac{23-\sqrt{433}}{2}
Add \frac{23}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}