Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}-23r+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 24}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -23 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-\left(-23\right)±\sqrt{529-4\times 24}}{2}
Square -23.
r=\frac{-\left(-23\right)±\sqrt{529-96}}{2}
Multiply -4 times 24.
r=\frac{-\left(-23\right)±\sqrt{433}}{2}
Add 529 to -96.
r=\frac{23±\sqrt{433}}{2}
The opposite of -23 is 23.
r=\frac{\sqrt{433}+23}{2}
Now solve the equation r=\frac{23±\sqrt{433}}{2} when ± is plus. Add 23 to \sqrt{433}.
r=\frac{23-\sqrt{433}}{2}
Now solve the equation r=\frac{23±\sqrt{433}}{2} when ± is minus. Subtract \sqrt{433} from 23.
r=\frac{\sqrt{433}+23}{2} r=\frac{23-\sqrt{433}}{2}
The equation is now solved.
r^{2}-23r+24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
r^{2}-23r+24-24=-24
Subtract 24 from both sides of the equation.
r^{2}-23r=-24
Subtracting 24 from itself leaves 0.
r^{2}-23r+\left(-\frac{23}{2}\right)^{2}=-24+\left(-\frac{23}{2}\right)^{2}
Divide -23, the coefficient of the x term, by 2 to get -\frac{23}{2}. Then add the square of -\frac{23}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-23r+\frac{529}{4}=-24+\frac{529}{4}
Square -\frac{23}{2} by squaring both the numerator and the denominator of the fraction.
r^{2}-23r+\frac{529}{4}=\frac{433}{4}
Add -24 to \frac{529}{4}.
\left(r-\frac{23}{2}\right)^{2}=\frac{433}{4}
Factor r^{2}-23r+\frac{529}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-\frac{23}{2}\right)^{2}}=\sqrt{\frac{433}{4}}
Take the square root of both sides of the equation.
r-\frac{23}{2}=\frac{\sqrt{433}}{2} r-\frac{23}{2}=-\frac{\sqrt{433}}{2}
Simplify.
r=\frac{\sqrt{433}+23}{2} r=\frac{23-\sqrt{433}}{2}
Add \frac{23}{2} to both sides of the equation.