Solve for p
p=2.5
p=0.5
Share
Copied to clipboard
p^{2}-3p+3=1.75
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p^{2}-3p+3-1.75=1.75-1.75
Subtract 1.75 from both sides of the equation.
p^{2}-3p+3-1.75=0
Subtracting 1.75 from itself leaves 0.
p^{2}-3p+1.25=0
Subtract 1.75 from 3.
p=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1.25}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 1.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-3\right)±\sqrt{9-4\times 1.25}}{2}
Square -3.
p=\frac{-\left(-3\right)±\sqrt{9-5}}{2}
Multiply -4 times 1.25.
p=\frac{-\left(-3\right)±\sqrt{4}}{2}
Add 9 to -5.
p=\frac{-\left(-3\right)±2}{2}
Take the square root of 4.
p=\frac{3±2}{2}
The opposite of -3 is 3.
p=\frac{5}{2}
Now solve the equation p=\frac{3±2}{2} when ± is plus. Add 3 to 2.
p=\frac{1}{2}
Now solve the equation p=\frac{3±2}{2} when ± is minus. Subtract 2 from 3.
p=\frac{5}{2} p=\frac{1}{2}
The equation is now solved.
p^{2}-3p+3=1.75
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
p^{2}-3p+3-3=1.75-3
Subtract 3 from both sides of the equation.
p^{2}-3p=1.75-3
Subtracting 3 from itself leaves 0.
p^{2}-3p=-1.25
Subtract 3 from 1.75.
p^{2}-3p+\left(-\frac{3}{2}\right)^{2}=-1.25+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-3p+\frac{9}{4}=\frac{-5+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
p^{2}-3p+\frac{9}{4}=1
Add -1.25 to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{3}{2}\right)^{2}=1
Factor p^{2}-3p+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{3}{2}\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
p-\frac{3}{2}=1 p-\frac{3}{2}=-1
Simplify.
p=\frac{5}{2} p=\frac{1}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}