Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-n-500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-500\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-1\right)±\sqrt{1+2000}}{2}
Multiply -4 times -500.
n=\frac{-\left(-1\right)±\sqrt{2001}}{2}
Add 1 to 2000.
n=\frac{1±\sqrt{2001}}{2}
The opposite of -1 is 1.
n=\frac{\sqrt{2001}+1}{2}
Now solve the equation n=\frac{1±\sqrt{2001}}{2} when ± is plus. Add 1 to \sqrt{2001}.
n=\frac{1-\sqrt{2001}}{2}
Now solve the equation n=\frac{1±\sqrt{2001}}{2} when ± is minus. Subtract \sqrt{2001} from 1.
n=\frac{\sqrt{2001}+1}{2} n=\frac{1-\sqrt{2001}}{2}
The equation is now solved.
n^{2}-n-500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}-n-500-\left(-500\right)=-\left(-500\right)
Add 500 to both sides of the equation.
n^{2}-n=-\left(-500\right)
Subtracting -500 from itself leaves 0.
n^{2}-n=500
Subtract -500 from 0.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=500+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-n+\frac{1}{4}=500+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-n+\frac{1}{4}=\frac{2001}{4}
Add 500 to \frac{1}{4}.
\left(n-\frac{1}{2}\right)^{2}=\frac{2001}{4}
Factor n^{2}-n+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{2001}{4}}
Take the square root of both sides of the equation.
n-\frac{1}{2}=\frac{\sqrt{2001}}{2} n-\frac{1}{2}=-\frac{\sqrt{2001}}{2}
Simplify.
n=\frac{\sqrt{2001}+1}{2} n=\frac{1-\sqrt{2001}}{2}
Add \frac{1}{2} to both sides of the equation.