Solve for m
m=2\sqrt{114}+20\approx 41.354156504
m=20-2\sqrt{114}\approx -1.354156504
Share
Copied to clipboard
m^{2}-40m-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-56\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -40 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-40\right)±\sqrt{1600-4\left(-56\right)}}{2}
Square -40.
m=\frac{-\left(-40\right)±\sqrt{1600+224}}{2}
Multiply -4 times -56.
m=\frac{-\left(-40\right)±\sqrt{1824}}{2}
Add 1600 to 224.
m=\frac{-\left(-40\right)±4\sqrt{114}}{2}
Take the square root of 1824.
m=\frac{40±4\sqrt{114}}{2}
The opposite of -40 is 40.
m=\frac{4\sqrt{114}+40}{2}
Now solve the equation m=\frac{40±4\sqrt{114}}{2} when ± is plus. Add 40 to 4\sqrt{114}.
m=2\sqrt{114}+20
Divide 40+4\sqrt{114} by 2.
m=\frac{40-4\sqrt{114}}{2}
Now solve the equation m=\frac{40±4\sqrt{114}}{2} when ± is minus. Subtract 4\sqrt{114} from 40.
m=20-2\sqrt{114}
Divide 40-4\sqrt{114} by 2.
m=2\sqrt{114}+20 m=20-2\sqrt{114}
The equation is now solved.
m^{2}-40m-56=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-40m-56-\left(-56\right)=-\left(-56\right)
Add 56 to both sides of the equation.
m^{2}-40m=-\left(-56\right)
Subtracting -56 from itself leaves 0.
m^{2}-40m=56
Subtract -56 from 0.
m^{2}-40m+\left(-20\right)^{2}=56+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-40m+400=56+400
Square -20.
m^{2}-40m+400=456
Add 56 to 400.
\left(m-20\right)^{2}=456
Factor m^{2}-40m+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-20\right)^{2}}=\sqrt{456}
Take the square root of both sides of the equation.
m-20=2\sqrt{114} m-20=-2\sqrt{114}
Simplify.
m=2\sqrt{114}+20 m=20-2\sqrt{114}
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}