Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-2m+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 5}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\times 5}}{2}
Square -2.
m=\frac{-\left(-2\right)±\sqrt{4-20}}{2}
Multiply -4 times 5.
m=\frac{-\left(-2\right)±\sqrt{-16}}{2}
Add 4 to -20.
m=\frac{-\left(-2\right)±4i}{2}
Take the square root of -16.
m=\frac{2±4i}{2}
The opposite of -2 is 2.
m=\frac{2+4i}{2}
Now solve the equation m=\frac{2±4i}{2} when ± is plus. Add 2 to 4i.
m=1+2i
Divide 2+4i by 2.
m=\frac{2-4i}{2}
Now solve the equation m=\frac{2±4i}{2} when ± is minus. Subtract 4i from 2.
m=1-2i
Divide 2-4i by 2.
m=1+2i m=1-2i
The equation is now solved.
m^{2}-2m+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-2m+5-5=-5
Subtract 5 from both sides of the equation.
m^{2}-2m=-5
Subtracting 5 from itself leaves 0.
m^{2}-2m+1=-5+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-2m+1=-4
Add -5 to 1.
\left(m-1\right)^{2}=-4
Factor m^{2}-2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-1\right)^{2}}=\sqrt{-4}
Take the square root of both sides of the equation.
m-1=2i m-1=-2i
Simplify.
m=1+2i m=1-2i
Add 1 to both sides of the equation.