Solve for m
m=\frac{13+\sqrt{119}i}{2}\approx 6.5+5.454356057i
m=\frac{-\sqrt{119}i+13}{2}\approx 6.5-5.454356057i
Share
Copied to clipboard
m^{2}-13m+72=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 72}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -13 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-13\right)±\sqrt{169-4\times 72}}{2}
Square -13.
m=\frac{-\left(-13\right)±\sqrt{169-288}}{2}
Multiply -4 times 72.
m=\frac{-\left(-13\right)±\sqrt{-119}}{2}
Add 169 to -288.
m=\frac{-\left(-13\right)±\sqrt{119}i}{2}
Take the square root of -119.
m=\frac{13±\sqrt{119}i}{2}
The opposite of -13 is 13.
m=\frac{13+\sqrt{119}i}{2}
Now solve the equation m=\frac{13±\sqrt{119}i}{2} when ± is plus. Add 13 to i\sqrt{119}.
m=\frac{-\sqrt{119}i+13}{2}
Now solve the equation m=\frac{13±\sqrt{119}i}{2} when ± is minus. Subtract i\sqrt{119} from 13.
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
The equation is now solved.
m^{2}-13m+72=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-13m+72-72=-72
Subtract 72 from both sides of the equation.
m^{2}-13m=-72
Subtracting 72 from itself leaves 0.
m^{2}-13m+\left(-\frac{13}{2}\right)^{2}=-72+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-13m+\frac{169}{4}=-72+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-13m+\frac{169}{4}=-\frac{119}{4}
Add -72 to \frac{169}{4}.
\left(m-\frac{13}{2}\right)^{2}=-\frac{119}{4}
Factor m^{2}-13m+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{13}{2}\right)^{2}}=\sqrt{-\frac{119}{4}}
Take the square root of both sides of the equation.
m-\frac{13}{2}=\frac{\sqrt{119}i}{2} m-\frac{13}{2}=-\frac{\sqrt{119}i}{2}
Simplify.
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
Add \frac{13}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}