Solve for f
\left\{\begin{matrix}f=-\frac{x+y}{x\left(2-x\right)}\text{, }&y\neq -x\text{ and }x\neq 2\text{ and }x\neq 0\\f\neq 0\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4fy+4f^{2}+4f+1}+2f+1}{2f}\text{, }&\left(f\neq 0\text{ and }y\neq -2\right)\text{ or }\left(f\neq 0\text{ and }f\neq \frac{1}{2}\text{ and }arg(2f-1)\geq \pi \right)\\x=-\frac{\sqrt{4fy+4f^{2}+4f+1}-2f-1}{2f}\text{, }&\left(arg(1-2f)\geq \pi \text{ and }f\neq \frac{1}{2}\right)\text{ or }\left(f\neq 0\text{ and }y\neq -2\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
f^{-1}\left(y+x\right)=x\left(x-2\right)
Multiply both sides of the equation by x-2.
f^{-1}y+f^{-1}x=x\left(x-2\right)
Use the distributive property to multiply f^{-1} by y+x.
f^{-1}y+f^{-1}x=x^{2}-2x
Use the distributive property to multiply x by x-2.
\frac{1}{f}x+\frac{1}{f}y=x^{2}-2x
Reorder the terms.
1x+1y=fx^{2}-2xf
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by f.
fx^{2}-2xf=1x+1y
Swap sides so that all variable terms are on the left hand side.
fx^{2}-2fx=x+y
Reorder the terms.
\left(x^{2}-2x\right)f=x+y
Combine all terms containing f.
\frac{\left(x^{2}-2x\right)f}{x^{2}-2x}=\frac{x+y}{x^{2}-2x}
Divide both sides by x^{2}-2x.
f=\frac{x+y}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
f=\frac{x+y}{x\left(x-2\right)}
Divide y+x by x^{2}-2x.
f=\frac{x+y}{x\left(x-2\right)}\text{, }f\neq 0
Variable f cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}