Solve for c
c=-1
c=2
Share
Copied to clipboard
a+b=-1 ab=-2
To solve the equation, factor c^{2}-c-2 using formula c^{2}+\left(a+b\right)c+ab=\left(c+a\right)\left(c+b\right). To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(c-2\right)\left(c+1\right)
Rewrite factored expression \left(c+a\right)\left(c+b\right) using the obtained values.
c=2 c=-1
To find equation solutions, solve c-2=0 and c+1=0.
a+b=-1 ab=1\left(-2\right)=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as c^{2}+ac+bc-2. To find a and b, set up a system to be solved.
a=-2 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(c^{2}-2c\right)+\left(c-2\right)
Rewrite c^{2}-c-2 as \left(c^{2}-2c\right)+\left(c-2\right).
c\left(c-2\right)+c-2
Factor out c in c^{2}-2c.
\left(c-2\right)\left(c+1\right)
Factor out common term c-2 by using distributive property.
c=2 c=-1
To find equation solutions, solve c-2=0 and c+1=0.
c^{2}-c-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
Multiply -4 times -2.
c=\frac{-\left(-1\right)±\sqrt{9}}{2}
Add 1 to 8.
c=\frac{-\left(-1\right)±3}{2}
Take the square root of 9.
c=\frac{1±3}{2}
The opposite of -1 is 1.
c=\frac{4}{2}
Now solve the equation c=\frac{1±3}{2} when ± is plus. Add 1 to 3.
c=2
Divide 4 by 2.
c=-\frac{2}{2}
Now solve the equation c=\frac{1±3}{2} when ± is minus. Subtract 3 from 1.
c=-1
Divide -2 by 2.
c=2 c=-1
The equation is now solved.
c^{2}-c-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
c^{2}-c-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
c^{2}-c=-\left(-2\right)
Subtracting -2 from itself leaves 0.
c^{2}-c=2
Subtract -2 from 0.
c^{2}-c+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}-c+\frac{1}{4}=2+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
c^{2}-c+\frac{1}{4}=\frac{9}{4}
Add 2 to \frac{1}{4}.
\left(c-\frac{1}{2}\right)^{2}=\frac{9}{4}
Factor c^{2}-c+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
c-\frac{1}{2}=\frac{3}{2} c-\frac{1}{2}=-\frac{3}{2}
Simplify.
c=2 c=-1
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}