Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b^{2}+b-\frac{1}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -\frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-1±\sqrt{1-4\left(-\frac{1}{4}\right)}}{2}
Square 1.
b=\frac{-1±\sqrt{1+1}}{2}
Multiply -4 times -\frac{1}{4}.
b=\frac{-1±\sqrt{2}}{2}
Add 1 to 1.
b=\frac{\sqrt{2}-1}{2}
Now solve the equation b=\frac{-1±\sqrt{2}}{2} when ± is plus. Add -1 to \sqrt{2}.
b=\frac{-\sqrt{2}-1}{2}
Now solve the equation b=\frac{-1±\sqrt{2}}{2} when ± is minus. Subtract \sqrt{2} from -1.
b=\frac{\sqrt{2}-1}{2} b=\frac{-\sqrt{2}-1}{2}
The equation is now solved.
b^{2}+b-\frac{1}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
b^{2}+b-\frac{1}{4}-\left(-\frac{1}{4}\right)=-\left(-\frac{1}{4}\right)
Add \frac{1}{4} to both sides of the equation.
b^{2}+b=-\left(-\frac{1}{4}\right)
Subtracting -\frac{1}{4} from itself leaves 0.
b^{2}+b=\frac{1}{4}
Subtract -\frac{1}{4} from 0.
b^{2}+b+\left(\frac{1}{2}\right)^{2}=\frac{1}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+b+\frac{1}{4}=\frac{1+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
b^{2}+b+\frac{1}{4}=\frac{1}{2}
Add \frac{1}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b+\frac{1}{2}\right)^{2}=\frac{1}{2}
Factor b^{2}+b+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
b+\frac{1}{2}=\frac{\sqrt{2}}{2} b+\frac{1}{2}=-\frac{\sqrt{2}}{2}
Simplify.
b=\frac{\sqrt{2}-1}{2} b=\frac{-\sqrt{2}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.