Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-24a-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-20\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -24 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-24\right)±\sqrt{576-4\left(-20\right)}}{2}
Square -24.
a=\frac{-\left(-24\right)±\sqrt{576+80}}{2}
Multiply -4 times -20.
a=\frac{-\left(-24\right)±\sqrt{656}}{2}
Add 576 to 80.
a=\frac{-\left(-24\right)±4\sqrt{41}}{2}
Take the square root of 656.
a=\frac{24±4\sqrt{41}}{2}
The opposite of -24 is 24.
a=\frac{4\sqrt{41}+24}{2}
Now solve the equation a=\frac{24±4\sqrt{41}}{2} when ± is plus. Add 24 to 4\sqrt{41}.
a=2\sqrt{41}+12
Divide 24+4\sqrt{41} by 2.
a=\frac{24-4\sqrt{41}}{2}
Now solve the equation a=\frac{24±4\sqrt{41}}{2} when ± is minus. Subtract 4\sqrt{41} from 24.
a=12-2\sqrt{41}
Divide 24-4\sqrt{41} by 2.
a=2\sqrt{41}+12 a=12-2\sqrt{41}
The equation is now solved.
a^{2}-24a-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-24a-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
a^{2}-24a=-\left(-20\right)
Subtracting -20 from itself leaves 0.
a^{2}-24a=20
Subtract -20 from 0.
a^{2}-24a+\left(-12\right)^{2}=20+\left(-12\right)^{2}
Divide -24, the coefficient of the x term, by 2 to get -12. Then add the square of -12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-24a+144=20+144
Square -12.
a^{2}-24a+144=164
Add 20 to 144.
\left(a-12\right)^{2}=164
Factor a^{2}-24a+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-12\right)^{2}}=\sqrt{164}
Take the square root of both sides of the equation.
a-12=2\sqrt{41} a-12=-2\sqrt{41}
Simplify.
a=2\sqrt{41}+12 a=12-2\sqrt{41}
Add 12 to both sides of the equation.