Solve for a
a=2\sqrt{41}+12\approx 24.806248475
a=12-2\sqrt{41}\approx -0.806248475
Share
Copied to clipboard
a^{2}-24a-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-20\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -24 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-24\right)±\sqrt{576-4\left(-20\right)}}{2}
Square -24.
a=\frac{-\left(-24\right)±\sqrt{576+80}}{2}
Multiply -4 times -20.
a=\frac{-\left(-24\right)±\sqrt{656}}{2}
Add 576 to 80.
a=\frac{-\left(-24\right)±4\sqrt{41}}{2}
Take the square root of 656.
a=\frac{24±4\sqrt{41}}{2}
The opposite of -24 is 24.
a=\frac{4\sqrt{41}+24}{2}
Now solve the equation a=\frac{24±4\sqrt{41}}{2} when ± is plus. Add 24 to 4\sqrt{41}.
a=2\sqrt{41}+12
Divide 24+4\sqrt{41} by 2.
a=\frac{24-4\sqrt{41}}{2}
Now solve the equation a=\frac{24±4\sqrt{41}}{2} when ± is minus. Subtract 4\sqrt{41} from 24.
a=12-2\sqrt{41}
Divide 24-4\sqrt{41} by 2.
a=2\sqrt{41}+12 a=12-2\sqrt{41}
The equation is now solved.
a^{2}-24a-20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}-24a-20-\left(-20\right)=-\left(-20\right)
Add 20 to both sides of the equation.
a^{2}-24a=-\left(-20\right)
Subtracting -20 from itself leaves 0.
a^{2}-24a=20
Subtract -20 from 0.
a^{2}-24a+\left(-12\right)^{2}=20+\left(-12\right)^{2}
Divide -24, the coefficient of the x term, by 2 to get -12. Then add the square of -12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-24a+144=20+144
Square -12.
a^{2}-24a+144=164
Add 20 to 144.
\left(a-12\right)^{2}=164
Factor a^{2}-24a+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-12\right)^{2}}=\sqrt{164}
Take the square root of both sides of the equation.
a-12=2\sqrt{41} a-12=-2\sqrt{41}
Simplify.
a=2\sqrt{41}+12 a=12-2\sqrt{41}
Add 12 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}