Factor
\left(a-5\right)\left(a+12\right)
Evaluate
\left(a-5\right)\left(a+12\right)
Share
Copied to clipboard
p+q=7 pq=1\left(-60\right)=-60
Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa-60. To find p and q, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
p=-5 q=12
The solution is the pair that gives sum 7.
\left(a^{2}-5a\right)+\left(12a-60\right)
Rewrite a^{2}+7a-60 as \left(a^{2}-5a\right)+\left(12a-60\right).
a\left(a-5\right)+12\left(a-5\right)
Factor out a in the first and 12 in the second group.
\left(a-5\right)\left(a+12\right)
Factor out common term a-5 by using distributive property.
a^{2}+7a-60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-7±\sqrt{7^{2}-4\left(-60\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-7±\sqrt{49-4\left(-60\right)}}{2}
Square 7.
a=\frac{-7±\sqrt{49+240}}{2}
Multiply -4 times -60.
a=\frac{-7±\sqrt{289}}{2}
Add 49 to 240.
a=\frac{-7±17}{2}
Take the square root of 289.
a=\frac{10}{2}
Now solve the equation a=\frac{-7±17}{2} when ± is plus. Add -7 to 17.
a=5
Divide 10 by 2.
a=-\frac{24}{2}
Now solve the equation a=\frac{-7±17}{2} when ± is minus. Subtract 17 from -7.
a=-12
Divide -24 by 2.
a^{2}+7a-60=\left(a-5\right)\left(a-\left(-12\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -12 for x_{2}.
a^{2}+7a-60=\left(a-5\right)\left(a+12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}