Evaluate
3a\left(1-a\right)\left(4a-3\right)^{2}
Expand
27a-99a^{2}+120a^{3}-48a^{4}
Share
Copied to clipboard
a^{2}\left(16a^{2}-24a+9\right)-a\left(4a-3\right)^{3}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a-3\right)^{2}.
16a^{4}-24a^{3}+9a^{2}-a\left(4a-3\right)^{3}
Use the distributive property to multiply a^{2} by 16a^{2}-24a+9.
16a^{4}-24a^{3}+9a^{2}-a\left(64a^{3}-144a^{2}+108a-27\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(4a-3\right)^{3}.
16a^{4}-24a^{3}+9a^{2}-\left(64a^{4}-144a^{3}+108a^{2}-27a\right)
Use the distributive property to multiply a by 64a^{3}-144a^{2}+108a-27.
16a^{4}-24a^{3}+9a^{2}-64a^{4}+144a^{3}-108a^{2}+27a
To find the opposite of 64a^{4}-144a^{3}+108a^{2}-27a, find the opposite of each term.
-48a^{4}-24a^{3}+9a^{2}+144a^{3}-108a^{2}+27a
Combine 16a^{4} and -64a^{4} to get -48a^{4}.
-48a^{4}+120a^{3}+9a^{2}-108a^{2}+27a
Combine -24a^{3} and 144a^{3} to get 120a^{3}.
-48a^{4}+120a^{3}-99a^{2}+27a
Combine 9a^{2} and -108a^{2} to get -99a^{2}.
a^{2}\left(16a^{2}-24a+9\right)-a\left(4a-3\right)^{3}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(4a-3\right)^{2}.
16a^{4}-24a^{3}+9a^{2}-a\left(4a-3\right)^{3}
Use the distributive property to multiply a^{2} by 16a^{2}-24a+9.
16a^{4}-24a^{3}+9a^{2}-a\left(64a^{3}-144a^{2}+108a-27\right)
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(4a-3\right)^{3}.
16a^{4}-24a^{3}+9a^{2}-\left(64a^{4}-144a^{3}+108a^{2}-27a\right)
Use the distributive property to multiply a by 64a^{3}-144a^{2}+108a-27.
16a^{4}-24a^{3}+9a^{2}-64a^{4}+144a^{3}-108a^{2}+27a
To find the opposite of 64a^{4}-144a^{3}+108a^{2}-27a, find the opposite of each term.
-48a^{4}-24a^{3}+9a^{2}+144a^{3}-108a^{2}+27a
Combine 16a^{4} and -64a^{4} to get -48a^{4}.
-48a^{4}+120a^{3}+9a^{2}-108a^{2}+27a
Combine -24a^{3} and 144a^{3} to get 120a^{3}.
-48a^{4}+120a^{3}-99a^{2}+27a
Combine 9a^{2} and -108a^{2} to get -99a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}