Skip to main content
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

A^{2}=100-36\times 0.7071
Add 64 and 36 to get 100.
A^{2}=100-25.4556
Multiply 36 and 0.7071 to get 25.4556.
A^{2}=74.5444
Subtract 25.4556 from 100 to get 74.5444.
A=\frac{\sqrt{186361}}{50} A=-\frac{\sqrt{186361}}{50}
Take the square root of both sides of the equation.
A^{2}=100-36\times 0.7071
Add 64 and 36 to get 100.
A^{2}=100-25.4556
Multiply 36 and 0.7071 to get 25.4556.
A^{2}=74.5444
Subtract 25.4556 from 100 to get 74.5444.
A^{2}-74.5444=0
Subtract 74.5444 from both sides.
A=\frac{0±\sqrt{0^{2}-4\left(-74.5444\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -74.5444 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
A=\frac{0±\sqrt{-4\left(-74.5444\right)}}{2}
Square 0.
A=\frac{0±\sqrt{298.1776}}{2}
Multiply -4 times -74.5444.
A=\frac{0±\frac{\sqrt{186361}}{25}}{2}
Take the square root of 298.1776.
A=\frac{\sqrt{186361}}{50}
Now solve the equation A=\frac{0±\frac{\sqrt{186361}}{25}}{2} when ± is plus.
A=-\frac{\sqrt{186361}}{50}
Now solve the equation A=\frac{0±\frac{\sqrt{186361}}{25}}{2} when ± is minus.
A=\frac{\sqrt{186361}}{50} A=-\frac{\sqrt{186361}}{50}
The equation is now solved.