Evaluate
160
Quiz
Trigonometry
5 problems similar to:
{ 80 }^{ 2 } \times \sin ( 45 ) \times \sin ( 45 ) \div 2 \div 10
Share
Copied to clipboard
\frac{\frac{80^{2}\left(\sin(45)\right)^{2}}{2}}{10}
Multiply \sin(45) and \sin(45) to get \left(\sin(45)\right)^{2}.
\frac{80^{2}\left(\sin(45)\right)^{2}}{2\times 10}
Express \frac{\frac{80^{2}\left(\sin(45)\right)^{2}}{2}}{10} as a single fraction.
\frac{6400\left(\sin(45)\right)^{2}}{2\times 10}
Calculate 80 to the power of 2 and get 6400.
\frac{6400\times \left(\frac{\sqrt{2}}{2}\right)^{2}}{2\times 10}
Get the value of \sin(45) from trigonometric values table.
\frac{6400\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\times 10}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{6400\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\times 10}
Express 6400\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{\frac{6400\left(\sqrt{2}\right)^{2}}{2^{2}}}{20}
Multiply 2 and 10 to get 20.
\frac{6400\left(\sqrt{2}\right)^{2}}{2^{2}\times 20}
Express \frac{\frac{6400\left(\sqrt{2}\right)^{2}}{2^{2}}}{20} as a single fraction.
\frac{320\left(\sqrt{2}\right)^{2}}{2^{2}}
Cancel out 20 in both numerator and denominator.
\frac{320\times 2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{640}{2^{2}}
Multiply 320 and 2 to get 640.
\frac{640}{4}
Calculate 2 to the power of 2 and get 4.
160
Divide 640 by 4 to get 160.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}