Solve for x
x = \frac{82 \sqrt{2}}{5} \approx 23.193102423
x = -\frac{82 \sqrt{2}}{5} \approx -23.193102423
Graph
Share
Copied to clipboard
67.24=\left(\frac{x}{4}\right)^{2}+\left(\frac{x}{4}\right)^{2}
Calculate 8.2 to the power of 2 and get 67.24.
67.24=\frac{x^{2}}{4^{2}}+\left(\frac{x}{4}\right)^{2}
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
67.24=\frac{x^{2}}{4^{2}}+\frac{x^{2}}{4^{2}}
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
67.24=2\times \frac{x^{2}}{4^{2}}
Combine \frac{x^{2}}{4^{2}} and \frac{x^{2}}{4^{2}} to get 2\times \frac{x^{2}}{4^{2}}.
67.24=2\times \frac{x^{2}}{16}
Calculate 4 to the power of 2 and get 16.
67.24=\frac{x^{2}}{8}
Cancel out 16, the greatest common factor in 2 and 16.
\frac{x^{2}}{8}=67.24
Swap sides so that all variable terms are on the left hand side.
x^{2}=67.24\times 8
Multiply both sides by 8.
x^{2}=537.92
Multiply 67.24 and 8 to get 537.92.
x=\frac{82\sqrt{2}}{5} x=-\frac{82\sqrt{2}}{5}
Take the square root of both sides of the equation.
67.24=\left(\frac{x}{4}\right)^{2}+\left(\frac{x}{4}\right)^{2}
Calculate 8.2 to the power of 2 and get 67.24.
67.24=\frac{x^{2}}{4^{2}}+\left(\frac{x}{4}\right)^{2}
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
67.24=\frac{x^{2}}{4^{2}}+\frac{x^{2}}{4^{2}}
To raise \frac{x}{4} to a power, raise both numerator and denominator to the power and then divide.
67.24=2\times \frac{x^{2}}{4^{2}}
Combine \frac{x^{2}}{4^{2}} and \frac{x^{2}}{4^{2}} to get 2\times \frac{x^{2}}{4^{2}}.
67.24=2\times \frac{x^{2}}{16}
Calculate 4 to the power of 2 and get 16.
67.24=\frac{x^{2}}{8}
Cancel out 16, the greatest common factor in 2 and 16.
\frac{x^{2}}{8}=67.24
Swap sides so that all variable terms are on the left hand side.
\frac{x^{2}}{8}-67.24=0
Subtract 67.24 from both sides.
x^{2}-537.92=0
Multiply both sides of the equation by 8.
x=\frac{0±\sqrt{0^{2}-4\left(-537.92\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -537.92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-537.92\right)}}{2}
Square 0.
x=\frac{0±\sqrt{2151.68}}{2}
Multiply -4 times -537.92.
x=\frac{0±\frac{164\sqrt{2}}{5}}{2}
Take the square root of 2151.68.
x=\frac{82\sqrt{2}}{5}
Now solve the equation x=\frac{0±\frac{164\sqrt{2}}{5}}{2} when ± is plus.
x=-\frac{82\sqrt{2}}{5}
Now solve the equation x=\frac{0±\frac{164\sqrt{2}}{5}}{2} when ± is minus.
x=\frac{82\sqrt{2}}{5} x=-\frac{82\sqrt{2}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}