{ 56 }^{ 2 } \div 9 \times (4 \sqrt{ 5-6) }
Evaluate (complex solution)
\frac{12544}{9}i\approx 1393.777777778i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{3136}{9}\times 4\sqrt{5-6}
Calculate 56 to the power of 2 and get 3136.
\frac{3136\times 4}{9}\sqrt{5-6}
Express \frac{3136}{9}\times 4 as a single fraction.
\frac{12544}{9}\sqrt{5-6}
Multiply 3136 and 4 to get 12544.
\frac{12544}{9}\sqrt{-1}
Subtract 6 from 5 to get -1.
\frac{12544}{9}i
Calculate the square root of -1 and get i.
Re(\frac{3136}{9}\times 4\sqrt{5-6})
Calculate 56 to the power of 2 and get 3136.
Re(\frac{3136\times 4}{9}\sqrt{5-6})
Express \frac{3136}{9}\times 4 as a single fraction.
Re(\frac{12544}{9}\sqrt{5-6})
Multiply 3136 and 4 to get 12544.
Re(\frac{12544}{9}\sqrt{-1})
Subtract 6 from 5 to get -1.
Re(\frac{12544}{9}i)
Calculate the square root of -1 and get i.
0
The real part of \frac{12544}{9}i is 0.
\frac{3136}{9}\times 4\sqrt{5-6}
Calculate 56 to the power of 2 and get 3136.
\frac{3136\times 4}{9}\sqrt{5-6}
Express \frac{3136}{9}\times 4 as a single fraction.
\frac{12544}{9}\sqrt{5-6}
Multiply 3136 and 4 to get 12544.
\frac{12544}{9}\sqrt{-1}
Subtract 6 from 5 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}