Solve for x
x=2\sqrt{2}\approx 2.828427125
x=-2\sqrt{2}\approx -2.828427125
Graph
Share
Copied to clipboard
25-\left(5-x^{2}\right)=6^{2}-x^{2}
Calculate 5 to the power of 2 and get 25.
25-5+x^{2}=6^{2}-x^{2}
To find the opposite of 5-x^{2}, find the opposite of each term.
20+x^{2}=6^{2}-x^{2}
Subtract 5 from 25 to get 20.
20+x^{2}=36-x^{2}
Calculate 6 to the power of 2 and get 36.
20+x^{2}+x^{2}=36
Add x^{2} to both sides.
20+2x^{2}=36
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=36-20
Subtract 20 from both sides.
2x^{2}=16
Subtract 20 from 36 to get 16.
x^{2}=\frac{16}{2}
Divide both sides by 2.
x^{2}=8
Divide 16 by 2 to get 8.
x=2\sqrt{2} x=-2\sqrt{2}
Take the square root of both sides of the equation.
25-\left(5-x^{2}\right)=6^{2}-x^{2}
Calculate 5 to the power of 2 and get 25.
25-5+x^{2}=6^{2}-x^{2}
To find the opposite of 5-x^{2}, find the opposite of each term.
20+x^{2}=6^{2}-x^{2}
Subtract 5 from 25 to get 20.
20+x^{2}=36-x^{2}
Calculate 6 to the power of 2 and get 36.
20+x^{2}-36=-x^{2}
Subtract 36 from both sides.
-16+x^{2}=-x^{2}
Subtract 36 from 20 to get -16.
-16+x^{2}+x^{2}=0
Add x^{2} to both sides.
-16+2x^{2}=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-16=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-16\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-16\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-16\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{128}}{2\times 2}
Multiply -8 times -16.
x=\frac{0±8\sqrt{2}}{2\times 2}
Take the square root of 128.
x=\frac{0±8\sqrt{2}}{4}
Multiply 2 times 2.
x=2\sqrt{2}
Now solve the equation x=\frac{0±8\sqrt{2}}{4} when ± is plus.
x=-2\sqrt{2}
Now solve the equation x=\frac{0±8\sqrt{2}}{4} when ± is minus.
x=2\sqrt{2} x=-2\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}